A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression
We provide a step-by-step guide for combining measurements of leaf reflectance and leaf traits to build statistical models that estimate traits from reflectance, enabling rapid collection of a diverse range of leaf properties. Abstract Partial least squares regression (PLSR) modelling is a statistic...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2021-09, Vol.72 (18), p.6175-6189 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6189 |
---|---|
container_issue | 18 |
container_start_page | 6175 |
container_title | Journal of experimental botany |
container_volume | 72 |
creator | Burnett, Angela C Anderson, Jeremiah Davidson, Kenneth J Ely, Kim S Lamour, Julien Li, Qianyu Morrison, Bailey D Yang, Dedi Rogers, Alistair Serbin, Shawn P |
description | We provide a step-by-step guide for combining measurements of leaf reflectance and leaf traits to build statistical models that estimate traits from reflectance, enabling rapid collection of a diverse range of leaf properties.
Abstract
Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences. |
doi_str_mv | 10.1093/jxb/erab295 |
format | Article |
fullrecord | <record><control><sourceid>oup_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jxb/erab295</oup_id><sourcerecordid>10.1093/jxb/erab295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-11dd51aacf03643a1c7b3767ac239501b5aa7fa61a6631b8cd908a72f6be3c63</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4gUsDlxQqB3HdnOsKv6kSlx6jzbOpnWVJsZ2EOXpMbRnTiPNfjNaDSG3nD1yVorZ7queoYc6L-UZmfBCsSwvBD8nE8byPGOl1JfkKoQdY0wyKSfke0FrDDFzHky0BulmtA3SOFDnsbHJ6zfUddBHGj3YGGjrhz3tENqsw0_s6Pbg0AeHJt072kAEOoa_FPhok5XYEGn4GMFjoB43SYId-mty0UIX8OakU7J-flovX7PV-8vbcrHKTJHrmHHeNJIDmJYJVQjgRtdCKw0mF6VkvJYAugXFQSnB67lpSjYHnbeqRmGUmJK7Y-0Qoq2CsRHN1gx9nz6uuC7nhf6FHo6Q8UMIHtvKebsHf6g4q36nrdK01WnaRN-fKkf3L_gDdnt9fQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Burnett, Angela C ; Anderson, Jeremiah ; Davidson, Kenneth J ; Ely, Kim S ; Lamour, Julien ; Li, Qianyu ; Morrison, Bailey D ; Yang, Dedi ; Rogers, Alistair ; Serbin, Shawn P</creator><creatorcontrib>Burnett, Angela C ; Anderson, Jeremiah ; Davidson, Kenneth J ; Ely, Kim S ; Lamour, Julien ; Li, Qianyu ; Morrison, Bailey D ; Yang, Dedi ; Rogers, Alistair ; Serbin, Shawn P ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>We provide a step-by-step guide for combining measurements of leaf reflectance and leaf traits to build statistical models that estimate traits from reflectance, enabling rapid collection of a diverse range of leaf properties.
Abstract
Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erab295</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>ENVIRONMENTAL SCIENCES ; hyperspectral reflectance ; leaf traits ; LMA ; modelling ; plant traits ; PLSR ; spectra ; spectroradiometer ; spectroscopy</subject><ispartof>Journal of experimental botany, 2021-09, Vol.72 (18), p.6175-6189</ispartof><rights>Published by Oxford University Press on behalf of the Society for Experimental Biology 2021. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-11dd51aacf03643a1c7b3767ac239501b5aa7fa61a6631b8cd908a72f6be3c63</citedby><cites>FETCH-LOGICAL-c427t-11dd51aacf03643a1c7b3767ac239501b5aa7fa61a6631b8cd908a72f6be3c63</cites><orcidid>0000-0001-5824-8605 ; 0000-0002-4410-507X ; 0000-0002-2678-9842 ; 0000-0001-5745-9689 ; 0000-0003-1705-7823 ; 0000-0001-8925-5226 ; 0000-0002-3915-001X ; 0000-0002-0627-039X ; 0000-0001-9262-7430 ; 0000-0003-4136-8971 ; 000000024410507X ; 0000000317057823 ; 0000000158248605 ; 0000000341368971 ; 000000020627039X ; 0000000157459689 ; 0000000226789842 ; 000000023915001X ; 0000000192627430 ; 0000000189255226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798476$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Burnett, Angela C</creatorcontrib><creatorcontrib>Anderson, Jeremiah</creatorcontrib><creatorcontrib>Davidson, Kenneth J</creatorcontrib><creatorcontrib>Ely, Kim S</creatorcontrib><creatorcontrib>Lamour, Julien</creatorcontrib><creatorcontrib>Li, Qianyu</creatorcontrib><creatorcontrib>Morrison, Bailey D</creatorcontrib><creatorcontrib>Yang, Dedi</creatorcontrib><creatorcontrib>Rogers, Alistair</creatorcontrib><creatorcontrib>Serbin, Shawn P</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression</title><title>Journal of experimental botany</title><description>We provide a step-by-step guide for combining measurements of leaf reflectance and leaf traits to build statistical models that estimate traits from reflectance, enabling rapid collection of a diverse range of leaf properties.
Abstract
Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences.</description><subject>ENVIRONMENTAL SCIENCES</subject><subject>hyperspectral reflectance</subject><subject>leaf traits</subject><subject>LMA</subject><subject>modelling</subject><subject>plant traits</subject><subject>PLSR</subject><subject>spectra</subject><subject>spectroradiometer</subject><subject>spectroscopy</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4gUsDlxQqB3HdnOsKv6kSlx6jzbOpnWVJsZ2EOXpMbRnTiPNfjNaDSG3nD1yVorZ7queoYc6L-UZmfBCsSwvBD8nE8byPGOl1JfkKoQdY0wyKSfke0FrDDFzHky0BulmtA3SOFDnsbHJ6zfUddBHGj3YGGjrhz3tENqsw0_s6Pbg0AeHJt072kAEOoa_FPhok5XYEGn4GMFjoB43SYId-mty0UIX8OakU7J-flovX7PV-8vbcrHKTJHrmHHeNJIDmJYJVQjgRtdCKw0mF6VkvJYAugXFQSnB67lpSjYHnbeqRmGUmJK7Y-0Qoq2CsRHN1gx9nz6uuC7nhf6FHo6Q8UMIHtvKebsHf6g4q36nrdK01WnaRN-fKkf3L_gDdnt9fQ</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Burnett, Angela C</creator><creator>Anderson, Jeremiah</creator><creator>Davidson, Kenneth J</creator><creator>Ely, Kim S</creator><creator>Lamour, Julien</creator><creator>Li, Qianyu</creator><creator>Morrison, Bailey D</creator><creator>Yang, Dedi</creator><creator>Rogers, Alistair</creator><creator>Serbin, Shawn P</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5824-8605</orcidid><orcidid>https://orcid.org/0000-0002-4410-507X</orcidid><orcidid>https://orcid.org/0000-0002-2678-9842</orcidid><orcidid>https://orcid.org/0000-0001-5745-9689</orcidid><orcidid>https://orcid.org/0000-0003-1705-7823</orcidid><orcidid>https://orcid.org/0000-0001-8925-5226</orcidid><orcidid>https://orcid.org/0000-0002-3915-001X</orcidid><orcidid>https://orcid.org/0000-0002-0627-039X</orcidid><orcidid>https://orcid.org/0000-0001-9262-7430</orcidid><orcidid>https://orcid.org/0000-0003-4136-8971</orcidid><orcidid>https://orcid.org/000000024410507X</orcidid><orcidid>https://orcid.org/0000000317057823</orcidid><orcidid>https://orcid.org/0000000158248605</orcidid><orcidid>https://orcid.org/0000000341368971</orcidid><orcidid>https://orcid.org/000000020627039X</orcidid><orcidid>https://orcid.org/0000000157459689</orcidid><orcidid>https://orcid.org/0000000226789842</orcidid><orcidid>https://orcid.org/000000023915001X</orcidid><orcidid>https://orcid.org/0000000192627430</orcidid><orcidid>https://orcid.org/0000000189255226</orcidid></search><sort><creationdate>20210930</creationdate><title>A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression</title><author>Burnett, Angela C ; Anderson, Jeremiah ; Davidson, Kenneth J ; Ely, Kim S ; Lamour, Julien ; Li, Qianyu ; Morrison, Bailey D ; Yang, Dedi ; Rogers, Alistair ; Serbin, Shawn P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-11dd51aacf03643a1c7b3767ac239501b5aa7fa61a6631b8cd908a72f6be3c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ENVIRONMENTAL SCIENCES</topic><topic>hyperspectral reflectance</topic><topic>leaf traits</topic><topic>LMA</topic><topic>modelling</topic><topic>plant traits</topic><topic>PLSR</topic><topic>spectra</topic><topic>spectroradiometer</topic><topic>spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burnett, Angela C</creatorcontrib><creatorcontrib>Anderson, Jeremiah</creatorcontrib><creatorcontrib>Davidson, Kenneth J</creatorcontrib><creatorcontrib>Ely, Kim S</creatorcontrib><creatorcontrib>Lamour, Julien</creatorcontrib><creatorcontrib>Li, Qianyu</creatorcontrib><creatorcontrib>Morrison, Bailey D</creatorcontrib><creatorcontrib>Yang, Dedi</creatorcontrib><creatorcontrib>Rogers, Alistair</creatorcontrib><creatorcontrib>Serbin, Shawn P</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnett, Angela C</au><au>Anderson, Jeremiah</au><au>Davidson, Kenneth J</au><au>Ely, Kim S</au><au>Lamour, Julien</au><au>Li, Qianyu</au><au>Morrison, Bailey D</au><au>Yang, Dedi</au><au>Rogers, Alistair</au><au>Serbin, Shawn P</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression</atitle><jtitle>Journal of experimental botany</jtitle><date>2021-09-30</date><risdate>2021</risdate><volume>72</volume><issue>18</issue><spage>6175</spage><epage>6189</epage><pages>6175-6189</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>We provide a step-by-step guide for combining measurements of leaf reflectance and leaf traits to build statistical models that estimate traits from reflectance, enabling rapid collection of a diverse range of leaf properties.
Abstract
Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/jxb/erab295</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5824-8605</orcidid><orcidid>https://orcid.org/0000-0002-4410-507X</orcidid><orcidid>https://orcid.org/0000-0002-2678-9842</orcidid><orcidid>https://orcid.org/0000-0001-5745-9689</orcidid><orcidid>https://orcid.org/0000-0003-1705-7823</orcidid><orcidid>https://orcid.org/0000-0001-8925-5226</orcidid><orcidid>https://orcid.org/0000-0002-3915-001X</orcidid><orcidid>https://orcid.org/0000-0002-0627-039X</orcidid><orcidid>https://orcid.org/0000-0001-9262-7430</orcidid><orcidid>https://orcid.org/0000-0003-4136-8971</orcidid><orcidid>https://orcid.org/000000024410507X</orcidid><orcidid>https://orcid.org/0000000317057823</orcidid><orcidid>https://orcid.org/0000000158248605</orcidid><orcidid>https://orcid.org/0000000341368971</orcidid><orcidid>https://orcid.org/000000020627039X</orcidid><orcidid>https://orcid.org/0000000157459689</orcidid><orcidid>https://orcid.org/0000000226789842</orcidid><orcidid>https://orcid.org/000000023915001X</orcidid><orcidid>https://orcid.org/0000000192627430</orcidid><orcidid>https://orcid.org/0000000189255226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2021-09, Vol.72 (18), p.6175-6189 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_osti_scitechconnect_1798476 |
source | Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | ENVIRONMENTAL SCIENCES hyperspectral reflectance leaf traits LMA modelling plant traits PLSR spectra spectroradiometer spectroscopy |
title | A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20best-practice%20guide%20to%20predicting%20plant%20traits%20from%20leaf-level%20hyperspectral%20data%20using%20partial%20least%20squares%20regression&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Burnett,%20Angela%20C&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-09-30&rft.volume=72&rft.issue=18&rft.spage=6175&rft.epage=6189&rft.pages=6175-6189&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erab295&rft_dat=%3Coup_osti_%3E10.1093/jxb/erab295%3C/oup_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/jxb/erab295&rfr_iscdi=true |