Role of relativistic laser intensity on isochoric heating of metal wire targets
In a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-04, Vol.29 (8), p.12240-12251 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12251 |
---|---|
container_issue | 8 |
container_start_page | 12240 |
container_title | Optics express |
container_volume | 29 |
creator | Martynenko, A S Pikuz, S A Antonelli, L Barbato, F Boutoux, G Giuffrida, L Honrubia, J J Hume, E Jacoby, J Khaghani, D Lancaster, K Neumayer, P Rosmej, O N Santos, J J Turianska, O Batani, D |
description | In a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were inferred by using spatially resolved X-ray emission spectroscopy looking at the Ti K
characteristic lines. A maximum temperature of ∼30 eV was reached. Our study extends this work by discussing the influence of the laser parameters on temperature profiles and the optimisation of WDM wire-based generation. The depth of wire heating may reach several hundreds of microns and it is proven to be strictly dependent on the laser intensity. At the same time, it is quantitatively demonstrated that the maximum WDM temperature doesn't appear to be sensitive to the laser intensity and mainly depends on the deposited laser energy considering ranges of 6×10
-6×10
W/cm
and 50-200 J. |
doi_str_mv | 10.1364/OE.415091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528173237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a66d46ed40b16e3909ee34ecd56b53c658d791d4015fe82e116b77f5e9c533883</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoTqcX_gEpXulFZ9KkTXIpY37AoCB6HdL0dIu0zUwyZf_ejk7x6hx4n_NyeBC6InhGaMHuy8WMkRxLcoTOCJYsZVjw43_7BJ2H8IExYVzyUzShVAomhThD5atrIXFN4qHV0X7ZEK1JWh3AJ7aP0Acbd4nrExucWTs_hGsYwH61P-og6jb5th6SqP0KYrhAJ41uA1we5hS9Py7e5s_psnx6mT8sU8MIjakuipoVUDNckQKoxBKAMjB1XlQ5NUUuai7JEJO8AZEBIUXFeZODNDmlQtApuhl73fCwCsZGMGvj-h5MVIRLQSQdoNsR2nj3uYUQVWeDgbbVPbhtUFmeCcJpRvmA3o2o8S4ED43aeNtpv1MEq71kVS7UKHlgrw-126qD-o_8tUp_AKsFdho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528173237</pqid></control><display><type>article</type><title>Role of relativistic laser intensity on isochoric heating of metal wire targets</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Martynenko, A S ; Pikuz, S A ; Antonelli, L ; Barbato, F ; Boutoux, G ; Giuffrida, L ; Honrubia, J J ; Hume, E ; Jacoby, J ; Khaghani, D ; Lancaster, K ; Neumayer, P ; Rosmej, O N ; Santos, J J ; Turianska, O ; Batani, D</creator><creatorcontrib>Martynenko, A S ; Pikuz, S A ; Antonelli, L ; Barbato, F ; Boutoux, G ; Giuffrida, L ; Honrubia, J J ; Hume, E ; Jacoby, J ; Khaghani, D ; Lancaster, K ; Neumayer, P ; Rosmej, O N ; Santos, J J ; Turianska, O ; Batani, D ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>In a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were inferred by using spatially resolved X-ray emission spectroscopy looking at the Ti K
characteristic lines. A maximum temperature of ∼30 eV was reached. Our study extends this work by discussing the influence of the laser parameters on temperature profiles and the optimisation of WDM wire-based generation. The depth of wire heating may reach several hundreds of microns and it is proven to be strictly dependent on the laser intensity. At the same time, it is quantitatively demonstrated that the maximum WDM temperature doesn't appear to be sensitive to the laser intensity and mainly depends on the deposited laser energy considering ranges of 6×10
-6×10
W/cm
and 50-200 J.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.415091</identifier><identifier>PMID: 33984988</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><ispartof>Optics express, 2021-04, Vol.29 (8), p.12240-12251</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a66d46ed40b16e3909ee34ecd56b53c658d791d4015fe82e116b77f5e9c533883</citedby><cites>FETCH-LOGICAL-c413t-a66d46ed40b16e3909ee34ecd56b53c658d791d4015fe82e116b77f5e9c533883</cites><orcidid>0000-0001-6904-9601 ; 0000-0003-2529-1142 ; 0000-0003-0694-948X ; 0000-0002-5139-2310 ; 0000000325291142 ; 0000000251392310 ; 000000030694948X ; 0000000169049601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,861,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33984988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798193$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martynenko, A S</creatorcontrib><creatorcontrib>Pikuz, S A</creatorcontrib><creatorcontrib>Antonelli, L</creatorcontrib><creatorcontrib>Barbato, F</creatorcontrib><creatorcontrib>Boutoux, G</creatorcontrib><creatorcontrib>Giuffrida, L</creatorcontrib><creatorcontrib>Honrubia, J J</creatorcontrib><creatorcontrib>Hume, E</creatorcontrib><creatorcontrib>Jacoby, J</creatorcontrib><creatorcontrib>Khaghani, D</creatorcontrib><creatorcontrib>Lancaster, K</creatorcontrib><creatorcontrib>Neumayer, P</creatorcontrib><creatorcontrib>Rosmej, O N</creatorcontrib><creatorcontrib>Santos, J J</creatorcontrib><creatorcontrib>Turianska, O</creatorcontrib><creatorcontrib>Batani, D</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Role of relativistic laser intensity on isochoric heating of metal wire targets</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>In a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were inferred by using spatially resolved X-ray emission spectroscopy looking at the Ti K
characteristic lines. A maximum temperature of ∼30 eV was reached. Our study extends this work by discussing the influence of the laser parameters on temperature profiles and the optimisation of WDM wire-based generation. The depth of wire heating may reach several hundreds of microns and it is proven to be strictly dependent on the laser intensity. At the same time, it is quantitatively demonstrated that the maximum WDM temperature doesn't appear to be sensitive to the laser intensity and mainly depends on the deposited laser energy considering ranges of 6×10
-6×10
W/cm
and 50-200 J.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoTqcX_gEpXulFZ9KkTXIpY37AoCB6HdL0dIu0zUwyZf_ejk7x6hx4n_NyeBC6InhGaMHuy8WMkRxLcoTOCJYsZVjw43_7BJ2H8IExYVzyUzShVAomhThD5atrIXFN4qHV0X7ZEK1JWh3AJ7aP0Acbd4nrExucWTs_hGsYwH61P-og6jb5th6SqP0KYrhAJ41uA1we5hS9Py7e5s_psnx6mT8sU8MIjakuipoVUDNckQKoxBKAMjB1XlQ5NUUuai7JEJO8AZEBIUXFeZODNDmlQtApuhl73fCwCsZGMGvj-h5MVIRLQSQdoNsR2nj3uYUQVWeDgbbVPbhtUFmeCcJpRvmA3o2o8S4ED43aeNtpv1MEq71kVS7UKHlgrw-126qD-o_8tUp_AKsFdho</recordid><startdate>20210412</startdate><enddate>20210412</enddate><creator>Martynenko, A S</creator><creator>Pikuz, S A</creator><creator>Antonelli, L</creator><creator>Barbato, F</creator><creator>Boutoux, G</creator><creator>Giuffrida, L</creator><creator>Honrubia, J J</creator><creator>Hume, E</creator><creator>Jacoby, J</creator><creator>Khaghani, D</creator><creator>Lancaster, K</creator><creator>Neumayer, P</creator><creator>Rosmej, O N</creator><creator>Santos, J J</creator><creator>Turianska, O</creator><creator>Batani, D</creator><general>Optical Society of America (OSA)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6904-9601</orcidid><orcidid>https://orcid.org/0000-0003-2529-1142</orcidid><orcidid>https://orcid.org/0000-0003-0694-948X</orcidid><orcidid>https://orcid.org/0000-0002-5139-2310</orcidid><orcidid>https://orcid.org/0000000325291142</orcidid><orcidid>https://orcid.org/0000000251392310</orcidid><orcidid>https://orcid.org/000000030694948X</orcidid><orcidid>https://orcid.org/0000000169049601</orcidid></search><sort><creationdate>20210412</creationdate><title>Role of relativistic laser intensity on isochoric heating of metal wire targets</title><author>Martynenko, A S ; Pikuz, S A ; Antonelli, L ; Barbato, F ; Boutoux, G ; Giuffrida, L ; Honrubia, J J ; Hume, E ; Jacoby, J ; Khaghani, D ; Lancaster, K ; Neumayer, P ; Rosmej, O N ; Santos, J J ; Turianska, O ; Batani, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a66d46ed40b16e3909ee34ecd56b53c658d791d4015fe82e116b77f5e9c533883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynenko, A S</creatorcontrib><creatorcontrib>Pikuz, S A</creatorcontrib><creatorcontrib>Antonelli, L</creatorcontrib><creatorcontrib>Barbato, F</creatorcontrib><creatorcontrib>Boutoux, G</creatorcontrib><creatorcontrib>Giuffrida, L</creatorcontrib><creatorcontrib>Honrubia, J J</creatorcontrib><creatorcontrib>Hume, E</creatorcontrib><creatorcontrib>Jacoby, J</creatorcontrib><creatorcontrib>Khaghani, D</creatorcontrib><creatorcontrib>Lancaster, K</creatorcontrib><creatorcontrib>Neumayer, P</creatorcontrib><creatorcontrib>Rosmej, O N</creatorcontrib><creatorcontrib>Santos, J J</creatorcontrib><creatorcontrib>Turianska, O</creatorcontrib><creatorcontrib>Batani, D</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynenko, A S</au><au>Pikuz, S A</au><au>Antonelli, L</au><au>Barbato, F</au><au>Boutoux, G</au><au>Giuffrida, L</au><au>Honrubia, J J</au><au>Hume, E</au><au>Jacoby, J</au><au>Khaghani, D</au><au>Lancaster, K</au><au>Neumayer, P</au><au>Rosmej, O N</au><au>Santos, J J</au><au>Turianska, O</au><au>Batani, D</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of relativistic laser intensity on isochoric heating of metal wire targets</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-04-12</date><risdate>2021</risdate><volume>29</volume><issue>8</issue><spage>12240</spage><epage>12251</epage><pages>12240-12251</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>In a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were inferred by using spatially resolved X-ray emission spectroscopy looking at the Ti K
characteristic lines. A maximum temperature of ∼30 eV was reached. Our study extends this work by discussing the influence of the laser parameters on temperature profiles and the optimisation of WDM wire-based generation. The depth of wire heating may reach several hundreds of microns and it is proven to be strictly dependent on the laser intensity. At the same time, it is quantitatively demonstrated that the maximum WDM temperature doesn't appear to be sensitive to the laser intensity and mainly depends on the deposited laser energy considering ranges of 6×10
-6×10
W/cm
and 50-200 J.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>33984988</pmid><doi>10.1364/OE.415091</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6904-9601</orcidid><orcidid>https://orcid.org/0000-0003-2529-1142</orcidid><orcidid>https://orcid.org/0000-0003-0694-948X</orcidid><orcidid>https://orcid.org/0000-0002-5139-2310</orcidid><orcidid>https://orcid.org/0000000325291142</orcidid><orcidid>https://orcid.org/0000000251392310</orcidid><orcidid>https://orcid.org/000000030694948X</orcidid><orcidid>https://orcid.org/0000000169049601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2021-04, Vol.29 (8), p.12240-12251 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_osti_scitechconnect_1798193 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY |
title | Role of relativistic laser intensity on isochoric heating of metal wire targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20relativistic%20laser%20intensity%20on%20isochoric%20heating%20of%20metal%20wire%20targets&rft.jtitle=Optics%20express&rft.au=Martynenko,%20A%20S&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-04-12&rft.volume=29&rft.issue=8&rft.spage=12240&rft.epage=12251&rft.pages=12240-12251&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.415091&rft_dat=%3Cproquest_osti_%3E2528173237%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528173237&rft_id=info:pmid/33984988&rfr_iscdi=true |