High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance

Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-12, Vol.12 (45), p.22904-22916
Hauptverfasser: Das, Priyanka, Nash, Jawnaye, Webb, Micah, Burns, Raelyn, Mapara, Varun N, Ghimire, Govinda, Rosenmann, Daniel, Divan, Ralu, Karaiskaj, Denis, McGill, Stephen A, Sumant, Anirudha V, Dai, Qilin, Ray, Paresh C, Tawade, Bhausaheb, Raghavan, Dharmaraj, Karim, Alamgir, Pradhan, Nihar R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22916
container_issue 45
container_start_page 22904
container_title Nanoscale
container_volume 12
creator Das, Priyanka
Nash, Jawnaye
Webb, Micah
Burns, Raelyn
Mapara, Varun N
Ghimire, Govinda
Rosenmann, Daniel
Divan, Ralu
Karaiskaj, Denis
McGill, Stephen A
Sumant, Anirudha V
Dai, Qilin
Ray, Paresh C
Tawade, Bhausaheb
Raghavan, Dharmaraj
Karim, Alamgir
Pradhan, Nihar R
description Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.
doi_str_mv 10.1039/d0nr07311c
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464534202</sourcerecordid><originalsourceid>FETCH-LOGICAL-o173t-134c64b3766fb4012f30e0781a819ec811f2be0a448cfa411f7b8d38a68f1f153</originalsourceid><addsrcrecordid>eNo9j89OAyEQxonRxFq9-AREz6uwUGC9mUatSY0H9bxh-dOl2UIFVtPX8ImlqfE0M5lvft83AFxidIMRaW418hFxgrE6ApMaUVQRwuvj_57RU3CW0hoh1hBGJuBn4VY97GKQupNew20fclDB61Fl9-XyDgYLrfmuBrkz0Wj4Et5qaJ0ZdGWsNSrDHKVPLuUQE9wYmca9bEzOr-BmHLKrsokb5-VQtrkPOt3Bw2Xas4tXloUSzZ4hvTLn4MTKIZmLvzoFH48P7_NFtXx9ep7fL6uAOckVJlQx2hHOmO0owrUlyCAusBS4MUpgbOvOIEmpUFbSMvJOaCIkExZbPCNTcHXghpRdm5TLRvUlji_RWswbgQUvouuDaBvD52hSbtdhjOWZ1NaU0RmhNarJL2ACdXU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464534202</pqid></control><display><type>article</type><title>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</title><source>Royal Society Of Chemistry Journals</source><creator>Das, Priyanka ; Nash, Jawnaye ; Webb, Micah ; Burns, Raelyn ; Mapara, Varun N ; Ghimire, Govinda ; Rosenmann, Daniel ; Divan, Ralu ; Karaiskaj, Denis ; McGill, Stephen A ; Sumant, Anirudha V ; Dai, Qilin ; Ray, Paresh C ; Tawade, Bhausaheb ; Raghavan, Dharmaraj ; Karim, Alamgir ; Pradhan, Nihar R</creator><creatorcontrib>Das, Priyanka ; Nash, Jawnaye ; Webb, Micah ; Burns, Raelyn ; Mapara, Varun N ; Ghimire, Govinda ; Rosenmann, Daniel ; Divan, Ralu ; Karaiskaj, Denis ; McGill, Stephen A ; Sumant, Anirudha V ; Dai, Qilin ; Ray, Paresh C ; Tawade, Bhausaheb ; Raghavan, Dharmaraj ; Karim, Alamgir ; Pradhan, Nihar R ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr07311c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Broadband ; Configurations ; Contact resistance ; Dark current ; detectivity ; Electric contacts ; Electrical properties ; Energy gap ; Field effect transistors ; Illumination ; Integrated circuits ; Light sources ; MATERIALS SCIENCE ; Molybdenum disulfide ; Optoelectronics ; Photoconductivity ; Photoelectric effect ; Photoelectric emission ; Phototransistors ; Polymer films ; Quantum efficiency ; responsivity ; Semiconductor devices ; Silicon dioxide ; Substrates ; Transistors ; White light</subject><ispartof>Nanoscale, 2020-12, Vol.12 (45), p.22904-22916</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000186804306 ; 0000000260280038 ; 0000000153989930 ; 0000000173853643 ; 0000000313029374 ; 0000000239124233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Priyanka</creatorcontrib><creatorcontrib>Nash, Jawnaye</creatorcontrib><creatorcontrib>Webb, Micah</creatorcontrib><creatorcontrib>Burns, Raelyn</creatorcontrib><creatorcontrib>Mapara, Varun N</creatorcontrib><creatorcontrib>Ghimire, Govinda</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Karaiskaj, Denis</creatorcontrib><creatorcontrib>McGill, Stephen A</creatorcontrib><creatorcontrib>Sumant, Anirudha V</creatorcontrib><creatorcontrib>Dai, Qilin</creatorcontrib><creatorcontrib>Ray, Paresh C</creatorcontrib><creatorcontrib>Tawade, Bhausaheb</creatorcontrib><creatorcontrib>Raghavan, Dharmaraj</creatorcontrib><creatorcontrib>Karim, Alamgir</creatorcontrib><creatorcontrib>Pradhan, Nihar R</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</title><title>Nanoscale</title><description>Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.</description><subject>Broadband</subject><subject>Configurations</subject><subject>Contact resistance</subject><subject>Dark current</subject><subject>detectivity</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>Illumination</subject><subject>Integrated circuits</subject><subject>Light sources</subject><subject>MATERIALS SCIENCE</subject><subject>Molybdenum disulfide</subject><subject>Optoelectronics</subject><subject>Photoconductivity</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Phototransistors</subject><subject>Polymer films</subject><subject>Quantum efficiency</subject><subject>responsivity</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Transistors</subject><subject>White light</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j89OAyEQxonRxFq9-AREz6uwUGC9mUatSY0H9bxh-dOl2UIFVtPX8ImlqfE0M5lvft83AFxidIMRaW418hFxgrE6ApMaUVQRwuvj_57RU3CW0hoh1hBGJuBn4VY97GKQupNew20fclDB61Fl9-XyDgYLrfmuBrkz0Wj4Et5qaJ0ZdGWsNSrDHKVPLuUQE9wYmca9bEzOr-BmHLKrsokb5-VQtrkPOt3Bw2Xas4tXloUSzZ4hvTLn4MTKIZmLvzoFH48P7_NFtXx9ep7fL6uAOckVJlQx2hHOmO0owrUlyCAusBS4MUpgbOvOIEmpUFbSMvJOaCIkExZbPCNTcHXghpRdm5TLRvUlji_RWswbgQUvouuDaBvD52hSbtdhjOWZ1NaU0RmhNarJL2ACdXU</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Das, Priyanka</creator><creator>Nash, Jawnaye</creator><creator>Webb, Micah</creator><creator>Burns, Raelyn</creator><creator>Mapara, Varun N</creator><creator>Ghimire, Govinda</creator><creator>Rosenmann, Daniel</creator><creator>Divan, Ralu</creator><creator>Karaiskaj, Denis</creator><creator>McGill, Stephen A</creator><creator>Sumant, Anirudha V</creator><creator>Dai, Qilin</creator><creator>Ray, Paresh C</creator><creator>Tawade, Bhausaheb</creator><creator>Raghavan, Dharmaraj</creator><creator>Karim, Alamgir</creator><creator>Pradhan, Nihar R</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000186804306</orcidid><orcidid>https://orcid.org/0000000260280038</orcidid><orcidid>https://orcid.org/0000000153989930</orcidid><orcidid>https://orcid.org/0000000173853643</orcidid><orcidid>https://orcid.org/0000000313029374</orcidid><orcidid>https://orcid.org/0000000239124233</orcidid></search><sort><creationdate>20201207</creationdate><title>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</title><author>Das, Priyanka ; Nash, Jawnaye ; Webb, Micah ; Burns, Raelyn ; Mapara, Varun N ; Ghimire, Govinda ; Rosenmann, Daniel ; Divan, Ralu ; Karaiskaj, Denis ; McGill, Stephen A ; Sumant, Anirudha V ; Dai, Qilin ; Ray, Paresh C ; Tawade, Bhausaheb ; Raghavan, Dharmaraj ; Karim, Alamgir ; Pradhan, Nihar R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o173t-134c64b3766fb4012f30e0781a819ec811f2be0a448cfa411f7b8d38a68f1f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadband</topic><topic>Configurations</topic><topic>Contact resistance</topic><topic>Dark current</topic><topic>detectivity</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>Illumination</topic><topic>Integrated circuits</topic><topic>Light sources</topic><topic>MATERIALS SCIENCE</topic><topic>Molybdenum disulfide</topic><topic>Optoelectronics</topic><topic>Photoconductivity</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Phototransistors</topic><topic>Polymer films</topic><topic>Quantum efficiency</topic><topic>responsivity</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Transistors</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Priyanka</creatorcontrib><creatorcontrib>Nash, Jawnaye</creatorcontrib><creatorcontrib>Webb, Micah</creatorcontrib><creatorcontrib>Burns, Raelyn</creatorcontrib><creatorcontrib>Mapara, Varun N</creatorcontrib><creatorcontrib>Ghimire, Govinda</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Karaiskaj, Denis</creatorcontrib><creatorcontrib>McGill, Stephen A</creatorcontrib><creatorcontrib>Sumant, Anirudha V</creatorcontrib><creatorcontrib>Dai, Qilin</creatorcontrib><creatorcontrib>Ray, Paresh C</creatorcontrib><creatorcontrib>Tawade, Bhausaheb</creatorcontrib><creatorcontrib>Raghavan, Dharmaraj</creatorcontrib><creatorcontrib>Karim, Alamgir</creatorcontrib><creatorcontrib>Pradhan, Nihar R</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Priyanka</au><au>Nash, Jawnaye</au><au>Webb, Micah</au><au>Burns, Raelyn</au><au>Mapara, Varun N</au><au>Ghimire, Govinda</au><au>Rosenmann, Daniel</au><au>Divan, Ralu</au><au>Karaiskaj, Denis</au><au>McGill, Stephen A</au><au>Sumant, Anirudha V</au><au>Dai, Qilin</au><au>Ray, Paresh C</au><au>Tawade, Bhausaheb</au><au>Raghavan, Dharmaraj</au><au>Karim, Alamgir</au><au>Pradhan, Nihar R</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</atitle><jtitle>Nanoscale</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>12</volume><issue>45</issue><spage>22904</spage><epage>22916</epage><pages>22904-22916</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr07311c</doi><tpages>13</tpages><orcidid>https://orcid.org/0000000186804306</orcidid><orcidid>https://orcid.org/0000000260280038</orcidid><orcidid>https://orcid.org/0000000153989930</orcidid><orcidid>https://orcid.org/0000000173853643</orcidid><orcidid>https://orcid.org/0000000313029374</orcidid><orcidid>https://orcid.org/0000000239124233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-12, Vol.12 (45), p.22904-22916
issn 2040-3364
2040-3372
language eng
recordid cdi_osti_scitechconnect_1798187
source Royal Society Of Chemistry Journals
subjects Broadband
Configurations
Contact resistance
Dark current
detectivity
Electric contacts
Electrical properties
Energy gap
Field effect transistors
Illumination
Integrated circuits
Light sources
MATERIALS SCIENCE
Molybdenum disulfide
Optoelectronics
Photoconductivity
Photoelectric effect
Photoelectric emission
Phototransistors
Polymer films
Quantum efficiency
responsivity
Semiconductor devices
Silicon dioxide
Substrates
Transistors
White light
title High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20broadband%20photoconductivity%20of%20few-layered%20MoS2%20field-effect%20transistors%20measured%20using%20multi-terminal%20methods:%20effects%20of%20contact%20resistance&rft.jtitle=Nanoscale&rft.au=Das,%20Priyanka&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-12-07&rft.volume=12&rft.issue=45&rft.spage=22904&rft.epage=22916&rft.pages=22904-22916&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr07311c&rft_dat=%3Cproquest_osti_%3E2464534202%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464534202&rft_id=info:pmid/&rfr_iscdi=true