High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance
Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-12, Vol.12 (45), p.22904-22916 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22916 |
---|---|
container_issue | 45 |
container_start_page | 22904 |
container_title | Nanoscale |
container_volume | 12 |
creator | Das, Priyanka Nash, Jawnaye Webb, Micah Burns, Raelyn Mapara, Varun N Ghimire, Govinda Rosenmann, Daniel Divan, Ralu Karaiskaj, Denis McGill, Stephen A Sumant, Anirudha V Dai, Qilin Ray, Paresh C Tawade, Bhausaheb Raghavan, Dharmaraj Karim, Alamgir Pradhan, Nihar R |
description | Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device. |
doi_str_mv | 10.1039/d0nr07311c |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464534202</sourcerecordid><originalsourceid>FETCH-LOGICAL-o173t-134c64b3766fb4012f30e0781a819ec811f2be0a448cfa411f7b8d38a68f1f153</originalsourceid><addsrcrecordid>eNo9j89OAyEQxonRxFq9-AREz6uwUGC9mUatSY0H9bxh-dOl2UIFVtPX8ImlqfE0M5lvft83AFxidIMRaW418hFxgrE6ApMaUVQRwuvj_57RU3CW0hoh1hBGJuBn4VY97GKQupNew20fclDB61Fl9-XyDgYLrfmuBrkz0Wj4Et5qaJ0ZdGWsNSrDHKVPLuUQE9wYmca9bEzOr-BmHLKrsokb5-VQtrkPOt3Bw2Xas4tXloUSzZ4hvTLn4MTKIZmLvzoFH48P7_NFtXx9ep7fL6uAOckVJlQx2hHOmO0owrUlyCAusBS4MUpgbOvOIEmpUFbSMvJOaCIkExZbPCNTcHXghpRdm5TLRvUlji_RWswbgQUvouuDaBvD52hSbtdhjOWZ1NaU0RmhNarJL2ACdXU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464534202</pqid></control><display><type>article</type><title>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</title><source>Royal Society Of Chemistry Journals</source><creator>Das, Priyanka ; Nash, Jawnaye ; Webb, Micah ; Burns, Raelyn ; Mapara, Varun N ; Ghimire, Govinda ; Rosenmann, Daniel ; Divan, Ralu ; Karaiskaj, Denis ; McGill, Stephen A ; Sumant, Anirudha V ; Dai, Qilin ; Ray, Paresh C ; Tawade, Bhausaheb ; Raghavan, Dharmaraj ; Karim, Alamgir ; Pradhan, Nihar R</creator><creatorcontrib>Das, Priyanka ; Nash, Jawnaye ; Webb, Micah ; Burns, Raelyn ; Mapara, Varun N ; Ghimire, Govinda ; Rosenmann, Daniel ; Divan, Ralu ; Karaiskaj, Denis ; McGill, Stephen A ; Sumant, Anirudha V ; Dai, Qilin ; Ray, Paresh C ; Tawade, Bhausaheb ; Raghavan, Dharmaraj ; Karim, Alamgir ; Pradhan, Nihar R ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr07311c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Broadband ; Configurations ; Contact resistance ; Dark current ; detectivity ; Electric contacts ; Electrical properties ; Energy gap ; Field effect transistors ; Illumination ; Integrated circuits ; Light sources ; MATERIALS SCIENCE ; Molybdenum disulfide ; Optoelectronics ; Photoconductivity ; Photoelectric effect ; Photoelectric emission ; Phototransistors ; Polymer films ; Quantum efficiency ; responsivity ; Semiconductor devices ; Silicon dioxide ; Substrates ; Transistors ; White light</subject><ispartof>Nanoscale, 2020-12, Vol.12 (45), p.22904-22916</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000186804306 ; 0000000260280038 ; 0000000153989930 ; 0000000173853643 ; 0000000313029374 ; 0000000239124233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Priyanka</creatorcontrib><creatorcontrib>Nash, Jawnaye</creatorcontrib><creatorcontrib>Webb, Micah</creatorcontrib><creatorcontrib>Burns, Raelyn</creatorcontrib><creatorcontrib>Mapara, Varun N</creatorcontrib><creatorcontrib>Ghimire, Govinda</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Karaiskaj, Denis</creatorcontrib><creatorcontrib>McGill, Stephen A</creatorcontrib><creatorcontrib>Sumant, Anirudha V</creatorcontrib><creatorcontrib>Dai, Qilin</creatorcontrib><creatorcontrib>Ray, Paresh C</creatorcontrib><creatorcontrib>Tawade, Bhausaheb</creatorcontrib><creatorcontrib>Raghavan, Dharmaraj</creatorcontrib><creatorcontrib>Karim, Alamgir</creatorcontrib><creatorcontrib>Pradhan, Nihar R</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</title><title>Nanoscale</title><description>Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.</description><subject>Broadband</subject><subject>Configurations</subject><subject>Contact resistance</subject><subject>Dark current</subject><subject>detectivity</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>Illumination</subject><subject>Integrated circuits</subject><subject>Light sources</subject><subject>MATERIALS SCIENCE</subject><subject>Molybdenum disulfide</subject><subject>Optoelectronics</subject><subject>Photoconductivity</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Phototransistors</subject><subject>Polymer films</subject><subject>Quantum efficiency</subject><subject>responsivity</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Transistors</subject><subject>White light</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j89OAyEQxonRxFq9-AREz6uwUGC9mUatSY0H9bxh-dOl2UIFVtPX8ImlqfE0M5lvft83AFxidIMRaW418hFxgrE6ApMaUVQRwuvj_57RU3CW0hoh1hBGJuBn4VY97GKQupNew20fclDB61Fl9-XyDgYLrfmuBrkz0Wj4Et5qaJ0ZdGWsNSrDHKVPLuUQE9wYmca9bEzOr-BmHLKrsokb5-VQtrkPOt3Bw2Xas4tXloUSzZ4hvTLn4MTKIZmLvzoFH48P7_NFtXx9ep7fL6uAOckVJlQx2hHOmO0owrUlyCAusBS4MUpgbOvOIEmpUFbSMvJOaCIkExZbPCNTcHXghpRdm5TLRvUlji_RWswbgQUvouuDaBvD52hSbtdhjOWZ1NaU0RmhNarJL2ACdXU</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Das, Priyanka</creator><creator>Nash, Jawnaye</creator><creator>Webb, Micah</creator><creator>Burns, Raelyn</creator><creator>Mapara, Varun N</creator><creator>Ghimire, Govinda</creator><creator>Rosenmann, Daniel</creator><creator>Divan, Ralu</creator><creator>Karaiskaj, Denis</creator><creator>McGill, Stephen A</creator><creator>Sumant, Anirudha V</creator><creator>Dai, Qilin</creator><creator>Ray, Paresh C</creator><creator>Tawade, Bhausaheb</creator><creator>Raghavan, Dharmaraj</creator><creator>Karim, Alamgir</creator><creator>Pradhan, Nihar R</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000186804306</orcidid><orcidid>https://orcid.org/0000000260280038</orcidid><orcidid>https://orcid.org/0000000153989930</orcidid><orcidid>https://orcid.org/0000000173853643</orcidid><orcidid>https://orcid.org/0000000313029374</orcidid><orcidid>https://orcid.org/0000000239124233</orcidid></search><sort><creationdate>20201207</creationdate><title>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</title><author>Das, Priyanka ; Nash, Jawnaye ; Webb, Micah ; Burns, Raelyn ; Mapara, Varun N ; Ghimire, Govinda ; Rosenmann, Daniel ; Divan, Ralu ; Karaiskaj, Denis ; McGill, Stephen A ; Sumant, Anirudha V ; Dai, Qilin ; Ray, Paresh C ; Tawade, Bhausaheb ; Raghavan, Dharmaraj ; Karim, Alamgir ; Pradhan, Nihar R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o173t-134c64b3766fb4012f30e0781a819ec811f2be0a448cfa411f7b8d38a68f1f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadband</topic><topic>Configurations</topic><topic>Contact resistance</topic><topic>Dark current</topic><topic>detectivity</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>Illumination</topic><topic>Integrated circuits</topic><topic>Light sources</topic><topic>MATERIALS SCIENCE</topic><topic>Molybdenum disulfide</topic><topic>Optoelectronics</topic><topic>Photoconductivity</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Phototransistors</topic><topic>Polymer films</topic><topic>Quantum efficiency</topic><topic>responsivity</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Transistors</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Priyanka</creatorcontrib><creatorcontrib>Nash, Jawnaye</creatorcontrib><creatorcontrib>Webb, Micah</creatorcontrib><creatorcontrib>Burns, Raelyn</creatorcontrib><creatorcontrib>Mapara, Varun N</creatorcontrib><creatorcontrib>Ghimire, Govinda</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Karaiskaj, Denis</creatorcontrib><creatorcontrib>McGill, Stephen A</creatorcontrib><creatorcontrib>Sumant, Anirudha V</creatorcontrib><creatorcontrib>Dai, Qilin</creatorcontrib><creatorcontrib>Ray, Paresh C</creatorcontrib><creatorcontrib>Tawade, Bhausaheb</creatorcontrib><creatorcontrib>Raghavan, Dharmaraj</creatorcontrib><creatorcontrib>Karim, Alamgir</creatorcontrib><creatorcontrib>Pradhan, Nihar R</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Priyanka</au><au>Nash, Jawnaye</au><au>Webb, Micah</au><au>Burns, Raelyn</au><au>Mapara, Varun N</au><au>Ghimire, Govinda</au><au>Rosenmann, Daniel</au><au>Divan, Ralu</au><au>Karaiskaj, Denis</au><au>McGill, Stephen A</au><au>Sumant, Anirudha V</au><au>Dai, Qilin</au><au>Ray, Paresh C</au><au>Tawade, Bhausaheb</au><au>Raghavan, Dharmaraj</au><au>Karim, Alamgir</au><au>Pradhan, Nihar R</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance</atitle><jtitle>Nanoscale</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>12</volume><issue>45</issue><spage>22904</spage><epage>22916</epage><pages>22904-22916</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W−1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W−1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W−1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr07311c</doi><tpages>13</tpages><orcidid>https://orcid.org/0000000186804306</orcidid><orcidid>https://orcid.org/0000000260280038</orcidid><orcidid>https://orcid.org/0000000153989930</orcidid><orcidid>https://orcid.org/0000000173853643</orcidid><orcidid>https://orcid.org/0000000313029374</orcidid><orcidid>https://orcid.org/0000000239124233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-12, Vol.12 (45), p.22904-22916 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_osti_scitechconnect_1798187 |
source | Royal Society Of Chemistry Journals |
subjects | Broadband Configurations Contact resistance Dark current detectivity Electric contacts Electrical properties Energy gap Field effect transistors Illumination Integrated circuits Light sources MATERIALS SCIENCE Molybdenum disulfide Optoelectronics Photoconductivity Photoelectric effect Photoelectric emission Phototransistors Polymer films Quantum efficiency responsivity Semiconductor devices Silicon dioxide Substrates Transistors White light |
title | High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using multi-terminal methods: effects of contact resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20broadband%20photoconductivity%20of%20few-layered%20MoS2%20field-effect%20transistors%20measured%20using%20multi-terminal%20methods:%20effects%20of%20contact%20resistance&rft.jtitle=Nanoscale&rft.au=Das,%20Priyanka&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-12-07&rft.volume=12&rft.issue=45&rft.spage=22904&rft.epage=22916&rft.pages=22904-22916&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr07311c&rft_dat=%3Cproquest_osti_%3E2464534202%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464534202&rft_id=info:pmid/&rfr_iscdi=true |