Numerical Simulation of Container Breach and Airborne Release of Solids Due to Mechanical Insults
Throughout U.S. Department of Energy (DOE) complexes, safety engineers employ the five-factor formula to calculate the source term (ST) that includes parameters of airborne release fraction (ARF), respirable fraction (RF) and damage ratio (DR). Limited experimental data on fragmentation of solids, s...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear engineering and radiation science 2021-07, Vol.7 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of nuclear engineering and radiation science |
container_volume | 7 |
creator | Louie, David L. Y. Le, San Gilkey, Lindsay N. |
description | Throughout U.S. Department of Energy (DOE) complexes, safety engineers employ the five-factor formula to calculate the source term (ST) that includes parameters of airborne release fraction (ARF), respirable fraction (RF) and damage ratio (DR). Limited experimental data on fragmentation of solids, such as ceramic pellets (i.e., PuO2), and container breach due to mechanical insults (i.e., drop and forklift impact), can be supplemented by modeling and simulation using high fidelity computational tools to estimate these parameters. This paper presents the use of Sandia National Laboratories' SIERRA solid mechanics (SM) finite element code to investigate the behavior of the widely utilized waste container (such as 7A Drum) subject to a range of free fall impact and puncture scenarios. The resulting behavior of the container is assessed, and the estimates are presented for bounding DRs from calculated breach areas for the various accident conditions considered. This paper also describes a novel multiscale constitutive model recently implemented in SIERRA/SM that simulates the fracture of brittle materials such as PuO2 and determines ARF during the fracture process. Comparisons are made between model predictions and simple bench-top experiments. |
doi_str_mv | 10.1115/1.4050212 |
format | Article |
fullrecord | <record><control><sourceid>asme_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1098857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-9db0af7de4183500da3b9ecadd808d0851fdab4f22456a11e79a246370d81c2c3</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgUQFHdgZLDaGFj_ixBlLeVUqIFGYrRvbUV0lNrKdgX9PSiume4dPR0cHoStK5pRScUfnBRGEUXaCJoxzNpN1JU7_f8nP0TSlHSGEFqWsRTlB8Db0NjoNHd64fuggu-BxaPEy-AzO24jvowW9xeANXrjYhOgt_rCdhWT3cBM6ZxJ-GCzOAb9avQX_l7fyaehyukRnLXTJTo_3An09PX4uX2br9-fVcrGeAatYntWmIdBWxhZUckGIAd7UVoMxkkhDpKCtgaZoGStECZTaqgZWlLwiRlLNNL9AN4fckLJTSbs8VtHBe6uzolUtqeAjuj0gHUNK0bbqO7oe4o-iRO03VFQdNxzt9cFC6q3ahSH6sf8IaylFxX8BzLFsLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Simulation of Container Breach and Airborne Release of Solids Due to Mechanical Insults</title><source>ASME Digital Collection Journals</source><creator>Louie, David L. Y. ; Le, San ; Gilkey, Lindsay N.</creator><creatorcontrib>Louie, David L. Y. ; Le, San ; Gilkey, Lindsay N. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Throughout U.S. Department of Energy (DOE) complexes, safety engineers employ the five-factor formula to calculate the source term (ST) that includes parameters of airborne release fraction (ARF), respirable fraction (RF) and damage ratio (DR). Limited experimental data on fragmentation of solids, such as ceramic pellets (i.e., PuO2), and container breach due to mechanical insults (i.e., drop and forklift impact), can be supplemented by modeling and simulation using high fidelity computational tools to estimate these parameters. This paper presents the use of Sandia National Laboratories' SIERRA solid mechanics (SM) finite element code to investigate the behavior of the widely utilized waste container (such as 7A Drum) subject to a range of free fall impact and puncture scenarios. The resulting behavior of the container is assessed, and the estimates are presented for bounding DRs from calculated breach areas for the various accident conditions considered. This paper also describes a novel multiscale constitutive model recently implemented in SIERRA/SM that simulates the fracture of brittle materials such as PuO2 and determines ARF during the fracture process. Comparisons are made between model predictions and simple bench-top experiments.</description><identifier>ISSN: 2332-8983</identifier><identifier>EISSN: 2332-8975</identifier><identifier>DOI: 10.1115/1.4050212</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>accidents ; containers ; damage ; forklifts ; fracture (materials) ; microscale devices ; RADIATION PROTECTION AND DOSIMETRY ; simulation ; solids</subject><ispartof>Journal of nuclear engineering and radiation science, 2021-07, Vol.7 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a272t-9db0af7de4183500da3b9ecadd808d0851fdab4f22456a11e79a246370d81c2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924,38519</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798153$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Louie, David L. Y.</creatorcontrib><creatorcontrib>Le, San</creatorcontrib><creatorcontrib>Gilkey, Lindsay N.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Numerical Simulation of Container Breach and Airborne Release of Solids Due to Mechanical Insults</title><title>Journal of nuclear engineering and radiation science</title><addtitle>ASME J of Nuclear Rad Sci</addtitle><description>Throughout U.S. Department of Energy (DOE) complexes, safety engineers employ the five-factor formula to calculate the source term (ST) that includes parameters of airborne release fraction (ARF), respirable fraction (RF) and damage ratio (DR). Limited experimental data on fragmentation of solids, such as ceramic pellets (i.e., PuO2), and container breach due to mechanical insults (i.e., drop and forklift impact), can be supplemented by modeling and simulation using high fidelity computational tools to estimate these parameters. This paper presents the use of Sandia National Laboratories' SIERRA solid mechanics (SM) finite element code to investigate the behavior of the widely utilized waste container (such as 7A Drum) subject to a range of free fall impact and puncture scenarios. The resulting behavior of the container is assessed, and the estimates are presented for bounding DRs from calculated breach areas for the various accident conditions considered. This paper also describes a novel multiscale constitutive model recently implemented in SIERRA/SM that simulates the fracture of brittle materials such as PuO2 and determines ARF during the fracture process. Comparisons are made between model predictions and simple bench-top experiments.</description><subject>accidents</subject><subject>containers</subject><subject>damage</subject><subject>forklifts</subject><subject>fracture (materials)</subject><subject>microscale devices</subject><subject>RADIATION PROTECTION AND DOSIMETRY</subject><subject>simulation</subject><subject>solids</subject><issn>2332-8983</issn><issn>2332-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90DtPwzAUBWALgUQFHdgZLDaGFj_ixBlLeVUqIFGYrRvbUV0lNrKdgX9PSiume4dPR0cHoStK5pRScUfnBRGEUXaCJoxzNpN1JU7_f8nP0TSlHSGEFqWsRTlB8Db0NjoNHd64fuggu-BxaPEy-AzO24jvowW9xeANXrjYhOgt_rCdhWT3cBM6ZxJ-GCzOAb9avQX_l7fyaehyukRnLXTJTo_3An09PX4uX2br9-fVcrGeAatYntWmIdBWxhZUckGIAd7UVoMxkkhDpKCtgaZoGStECZTaqgZWlLwiRlLNNL9AN4fckLJTSbs8VtHBe6uzolUtqeAjuj0gHUNK0bbqO7oe4o-iRO03VFQdNxzt9cFC6q3ahSH6sf8IaylFxX8BzLFsLA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Louie, David L. Y.</creator><creator>Le, San</creator><creator>Gilkey, Lindsay N.</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210701</creationdate><title>Numerical Simulation of Container Breach and Airborne Release of Solids Due to Mechanical Insults</title><author>Louie, David L. Y. ; Le, San ; Gilkey, Lindsay N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-9db0af7de4183500da3b9ecadd808d0851fdab4f22456a11e79a246370d81c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>accidents</topic><topic>containers</topic><topic>damage</topic><topic>forklifts</topic><topic>fracture (materials)</topic><topic>microscale devices</topic><topic>RADIATION PROTECTION AND DOSIMETRY</topic><topic>simulation</topic><topic>solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louie, David L. Y.</creatorcontrib><creatorcontrib>Le, San</creatorcontrib><creatorcontrib>Gilkey, Lindsay N.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear engineering and radiation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louie, David L. Y.</au><au>Le, San</au><au>Gilkey, Lindsay N.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Container Breach and Airborne Release of Solids Due to Mechanical Insults</atitle><jtitle>Journal of nuclear engineering and radiation science</jtitle><stitle>ASME J of Nuclear Rad Sci</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>7</volume><issue>3</issue><issn>2332-8983</issn><eissn>2332-8975</eissn><abstract>Throughout U.S. Department of Energy (DOE) complexes, safety engineers employ the five-factor formula to calculate the source term (ST) that includes parameters of airborne release fraction (ARF), respirable fraction (RF) and damage ratio (DR). Limited experimental data on fragmentation of solids, such as ceramic pellets (i.e., PuO2), and container breach due to mechanical insults (i.e., drop and forklift impact), can be supplemented by modeling and simulation using high fidelity computational tools to estimate these parameters. This paper presents the use of Sandia National Laboratories' SIERRA solid mechanics (SM) finite element code to investigate the behavior of the widely utilized waste container (such as 7A Drum) subject to a range of free fall impact and puncture scenarios. The resulting behavior of the container is assessed, and the estimates are presented for bounding DRs from calculated breach areas for the various accident conditions considered. This paper also describes a novel multiscale constitutive model recently implemented in SIERRA/SM that simulates the fracture of brittle materials such as PuO2 and determines ARF during the fracture process. Comparisons are made between model predictions and simple bench-top experiments.</abstract><cop>United States</cop><pub>ASME</pub><doi>10.1115/1.4050212</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2332-8983 |
ispartof | Journal of nuclear engineering and radiation science, 2021-07, Vol.7 (3) |
issn | 2332-8983 2332-8975 |
language | eng |
recordid | cdi_osti_scitechconnect_1798153 |
source | ASME Digital Collection Journals |
subjects | accidents containers damage forklifts fracture (materials) microscale devices RADIATION PROTECTION AND DOSIMETRY simulation solids |
title | Numerical Simulation of Container Breach and Airborne Release of Solids Due to Mechanical Insults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Container%20Breach%20and%20Airborne%20Release%20of%20Solids%20Due%20to%20Mechanical%20Insults&rft.jtitle=Journal%20of%20nuclear%20engineering%20and%20radiation%20science&rft.au=Louie,%20David%20L.%20Y.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-07-01&rft.volume=7&rft.issue=3&rft.issn=2332-8983&rft.eissn=2332-8975&rft_id=info:doi/10.1115/1.4050212&rft_dat=%3Casme_osti_%3E1098857%3C/asme_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |