Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cation−π Interaction, and Confinement

Understanding ion solvation and transport under confinement is critical for a wide range of emerging technologies, including water desalination and energy storage. While molecular dynamics (MD) simulations have been widely used to study the behavior of confined ions, considerable deviations between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2021-03, Vol.17 (3), p.1596-1605
Hauptverfasser: Aydin, Fikret, Moradzadeh, Alireza, Bilodeau, Camille L, Lau, Edmond Y, Schwegler, Eric, Aluru, Narayana R, Pham, Tuan Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 3
container_start_page 1596
container_title Journal of chemical theory and computation
container_volume 17
creator Aydin, Fikret
Moradzadeh, Alireza
Bilodeau, Camille L
Lau, Edmond Y
Schwegler, Eric
Aluru, Narayana R
Pham, Tuan Anh
description Understanding ion solvation and transport under confinement is critical for a wide range of emerging technologies, including water desalination and energy storage. While molecular dynamics (MD) simulations have been widely used to study the behavior of confined ions, considerable deviations between simulation results depending on the specific treatment of intermolecular interactions remain. In the following, we present a systematic investigation of the structure and dynamics of two representative solutions, that is, KCl and LiCl, confined in narrow carbon nanotubes (CNTs) with a diameter of 1.1 and 1.5 nm, using a combination of first-principles and classical MD simulations. Our simulations show that the inclusion of both polarization and cation−π interactions is essential for the description of ion solvation under confinement, particularly for large ions with weak hydration energies. Beyond the variation in ion solvation, we find that cation−π interactions can significantly influence the transport properties of ions in CNTs, particularly for KCl, where our simulations point to a strong correlation between ion dehydration and diffusion. Our study highlights the complex interplay between nanoconfinement and specific intermolecular interactions that strongly control the solvation and transport properties of ions.
doi_str_mv 10.1021/acs.jctc.0c00827
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511372932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-ca3a723c78f5e353551aeedfd5a2958d875aee46ce01eed4d2520e074c2d023b3</originalsourceid><addsrcrecordid>eNp1kb1OHDEUha0oKBCSniqykibF7uLf-aGLVgRWQoAUUlsezx3h1ay9sT2JgIaSOi_GO-RJ4mEXikipfO_Vd451dBA6oGRGCaOH2sTZ0iQzI4aQipWv0B6Vop7WBStev8y02kVvY1wSwrlg_A3a5bxgkjGxh-4W3uFvvv-pk82Tdi2-CtrFtQ8JW4fPdQj-F57r0Phxcz4NDcQjfNx1YFLEvsOXvtfB3urG9jbdTDI8ev15-P14jxcuQdBmPEye3OfeddbBClx6h3Y63Ud4v3330fevx1fz0-nZxcli_uVsqgXnaWo01yXjpqw6CVxyKakGaLtWalbLqq1KmXdRGCA030WboxEgpTCsJYw3fB993Pj6mKyKxiYw18Y7lwMoWtYV4SJDnzfQOvgfA8SkVjYa6HvtwA9RMVFzQlhdFhn99A-69ENwOYJiklJespqzTJENZYKPMUCn1sGudLhRlKixPZXbU2N7attelnzYGg_NCtoXwXNdGZhsgCfp86f_9fsLY3qnog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511372932</pqid></control><display><type>article</type><title>Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cation−π Interaction, and Confinement</title><source>American Chemical Society Journals</source><creator>Aydin, Fikret ; Moradzadeh, Alireza ; Bilodeau, Camille L ; Lau, Edmond Y ; Schwegler, Eric ; Aluru, Narayana R ; Pham, Tuan Anh</creator><creatorcontrib>Aydin, Fikret ; Moradzadeh, Alireza ; Bilodeau, Camille L ; Lau, Edmond Y ; Schwegler, Eric ; Aluru, Narayana R ; Pham, Tuan Anh ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Understanding ion solvation and transport under confinement is critical for a wide range of emerging technologies, including water desalination and energy storage. While molecular dynamics (MD) simulations have been widely used to study the behavior of confined ions, considerable deviations between simulation results depending on the specific treatment of intermolecular interactions remain. In the following, we present a systematic investigation of the structure and dynamics of two representative solutions, that is, KCl and LiCl, confined in narrow carbon nanotubes (CNTs) with a diameter of 1.1 and 1.5 nm, using a combination of first-principles and classical MD simulations. Our simulations show that the inclusion of both polarization and cation−π interactions is essential for the description of ion solvation under confinement, particularly for large ions with weak hydration energies. Beyond the variation in ion solvation, we find that cation−π interactions can significantly influence the transport properties of ions in CNTs, particularly for KCl, where our simulations point to a strong correlation between ion dehydration and diffusion. Our study highlights the complex interplay between nanoconfinement and specific intermolecular interactions that strongly control the solvation and transport properties of ions.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00827</identifier><identifier>PMID: 33625224</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon nanotubes ; Cations ; classical and quantum mechanics ; Confinement ; Dehydration ; Desalination ; diffusion ; Dynamic structural analysis ; energy ; Energy storage ; First principles ; general physics ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ions ; materials science ; Molecular dynamics ; Molecular Mechanics ; nanoscience and nanotechnology ; New technology ; quantum confinement ; Simulation ; Solvation ; Transport properties</subject><ispartof>Journal of chemical theory and computation, 2021-03, Vol.17 (3), p.1596-1605</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 9, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-ca3a723c78f5e353551aeedfd5a2958d875aee46ce01eed4d2520e074c2d023b3</citedby><cites>FETCH-LOGICAL-a433t-ca3a723c78f5e353551aeedfd5a2958d875aee46ce01eed4d2520e074c2d023b3</cites><orcidid>0000-0003-3237-8043 ; 0000-0003-3355-7086 ; 0000-0002-9622-7837 ; 0000-0003-0025-7263 ; 0000-0002-8358-5280 ; 0000000283585280 ; 0000000332378043 ; 0000000296227837 ; 0000000333557086 ; 0000000300257263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00827$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.0c00827$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33625224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798034$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aydin, Fikret</creatorcontrib><creatorcontrib>Moradzadeh, Alireza</creatorcontrib><creatorcontrib>Bilodeau, Camille L</creatorcontrib><creatorcontrib>Lau, Edmond Y</creatorcontrib><creatorcontrib>Schwegler, Eric</creatorcontrib><creatorcontrib>Aluru, Narayana R</creatorcontrib><creatorcontrib>Pham, Tuan Anh</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cation−π Interaction, and Confinement</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Understanding ion solvation and transport under confinement is critical for a wide range of emerging technologies, including water desalination and energy storage. While molecular dynamics (MD) simulations have been widely used to study the behavior of confined ions, considerable deviations between simulation results depending on the specific treatment of intermolecular interactions remain. In the following, we present a systematic investigation of the structure and dynamics of two representative solutions, that is, KCl and LiCl, confined in narrow carbon nanotubes (CNTs) with a diameter of 1.1 and 1.5 nm, using a combination of first-principles and classical MD simulations. Our simulations show that the inclusion of both polarization and cation−π interactions is essential for the description of ion solvation under confinement, particularly for large ions with weak hydration energies. Beyond the variation in ion solvation, we find that cation−π interactions can significantly influence the transport properties of ions in CNTs, particularly for KCl, where our simulations point to a strong correlation between ion dehydration and diffusion. Our study highlights the complex interplay between nanoconfinement and specific intermolecular interactions that strongly control the solvation and transport properties of ions.</description><subject>Carbon nanotubes</subject><subject>Cations</subject><subject>classical and quantum mechanics</subject><subject>Confinement</subject><subject>Dehydration</subject><subject>Desalination</subject><subject>diffusion</subject><subject>Dynamic structural analysis</subject><subject>energy</subject><subject>Energy storage</subject><subject>First principles</subject><subject>general physics</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ions</subject><subject>materials science</subject><subject>Molecular dynamics</subject><subject>Molecular Mechanics</subject><subject>nanoscience and nanotechnology</subject><subject>New technology</subject><subject>quantum confinement</subject><subject>Simulation</subject><subject>Solvation</subject><subject>Transport properties</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kb1OHDEUha0oKBCSniqykibF7uLf-aGLVgRWQoAUUlsezx3h1ay9sT2JgIaSOi_GO-RJ4mEXikipfO_Vd451dBA6oGRGCaOH2sTZ0iQzI4aQipWv0B6Vop7WBStev8y02kVvY1wSwrlg_A3a5bxgkjGxh-4W3uFvvv-pk82Tdi2-CtrFtQ8JW4fPdQj-F57r0Phxcz4NDcQjfNx1YFLEvsOXvtfB3urG9jbdTDI8ev15-P14jxcuQdBmPEye3OfeddbBClx6h3Y63Ud4v3330fevx1fz0-nZxcli_uVsqgXnaWo01yXjpqw6CVxyKakGaLtWalbLqq1KmXdRGCA030WboxEgpTCsJYw3fB993Pj6mKyKxiYw18Y7lwMoWtYV4SJDnzfQOvgfA8SkVjYa6HvtwA9RMVFzQlhdFhn99A-69ENwOYJiklJespqzTJENZYKPMUCn1sGudLhRlKixPZXbU2N7attelnzYGg_NCtoXwXNdGZhsgCfp86f_9fsLY3qnog</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>Aydin, Fikret</creator><creator>Moradzadeh, Alireza</creator><creator>Bilodeau, Camille L</creator><creator>Lau, Edmond Y</creator><creator>Schwegler, Eric</creator><creator>Aluru, Narayana R</creator><creator>Pham, Tuan Anh</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3237-8043</orcidid><orcidid>https://orcid.org/0000-0003-3355-7086</orcidid><orcidid>https://orcid.org/0000-0002-9622-7837</orcidid><orcidid>https://orcid.org/0000-0003-0025-7263</orcidid><orcidid>https://orcid.org/0000-0002-8358-5280</orcidid><orcidid>https://orcid.org/0000000283585280</orcidid><orcidid>https://orcid.org/0000000332378043</orcidid><orcidid>https://orcid.org/0000000296227837</orcidid><orcidid>https://orcid.org/0000000333557086</orcidid><orcidid>https://orcid.org/0000000300257263</orcidid></search><sort><creationdate>20210309</creationdate><title>Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cation−π Interaction, and Confinement</title><author>Aydin, Fikret ; Moradzadeh, Alireza ; Bilodeau, Camille L ; Lau, Edmond Y ; Schwegler, Eric ; Aluru, Narayana R ; Pham, Tuan Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-ca3a723c78f5e353551aeedfd5a2958d875aee46ce01eed4d2520e074c2d023b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nanotubes</topic><topic>Cations</topic><topic>classical and quantum mechanics</topic><topic>Confinement</topic><topic>Dehydration</topic><topic>Desalination</topic><topic>diffusion</topic><topic>Dynamic structural analysis</topic><topic>energy</topic><topic>Energy storage</topic><topic>First principles</topic><topic>general physics</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ions</topic><topic>materials science</topic><topic>Molecular dynamics</topic><topic>Molecular Mechanics</topic><topic>nanoscience and nanotechnology</topic><topic>New technology</topic><topic>quantum confinement</topic><topic>Simulation</topic><topic>Solvation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydin, Fikret</creatorcontrib><creatorcontrib>Moradzadeh, Alireza</creatorcontrib><creatorcontrib>Bilodeau, Camille L</creatorcontrib><creatorcontrib>Lau, Edmond Y</creatorcontrib><creatorcontrib>Schwegler, Eric</creatorcontrib><creatorcontrib>Aluru, Narayana R</creatorcontrib><creatorcontrib>Pham, Tuan Anh</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aydin, Fikret</au><au>Moradzadeh, Alireza</au><au>Bilodeau, Camille L</au><au>Lau, Edmond Y</au><au>Schwegler, Eric</au><au>Aluru, Narayana R</au><au>Pham, Tuan Anh</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cation−π Interaction, and Confinement</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2021-03-09</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>1596</spage><epage>1605</epage><pages>1596-1605</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Understanding ion solvation and transport under confinement is critical for a wide range of emerging technologies, including water desalination and energy storage. While molecular dynamics (MD) simulations have been widely used to study the behavior of confined ions, considerable deviations between simulation results depending on the specific treatment of intermolecular interactions remain. In the following, we present a systematic investigation of the structure and dynamics of two representative solutions, that is, KCl and LiCl, confined in narrow carbon nanotubes (CNTs) with a diameter of 1.1 and 1.5 nm, using a combination of first-principles and classical MD simulations. Our simulations show that the inclusion of both polarization and cation−π interactions is essential for the description of ion solvation under confinement, particularly for large ions with weak hydration energies. Beyond the variation in ion solvation, we find that cation−π interactions can significantly influence the transport properties of ions in CNTs, particularly for KCl, where our simulations point to a strong correlation between ion dehydration and diffusion. Our study highlights the complex interplay between nanoconfinement and specific intermolecular interactions that strongly control the solvation and transport properties of ions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33625224</pmid><doi>10.1021/acs.jctc.0c00827</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3237-8043</orcidid><orcidid>https://orcid.org/0000-0003-3355-7086</orcidid><orcidid>https://orcid.org/0000-0002-9622-7837</orcidid><orcidid>https://orcid.org/0000-0003-0025-7263</orcidid><orcidid>https://orcid.org/0000-0002-8358-5280</orcidid><orcidid>https://orcid.org/0000000283585280</orcidid><orcidid>https://orcid.org/0000000332378043</orcidid><orcidid>https://orcid.org/0000000296227837</orcidid><orcidid>https://orcid.org/0000000333557086</orcidid><orcidid>https://orcid.org/0000000300257263</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2021-03, Vol.17 (3), p.1596-1605
issn 1549-9618
1549-9626
language eng
recordid cdi_osti_scitechconnect_1798034
source American Chemical Society Journals
subjects Carbon nanotubes
Cations
classical and quantum mechanics
Confinement
Dehydration
Desalination
diffusion
Dynamic structural analysis
energy
Energy storage
First principles
general physics
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ions
materials science
Molecular dynamics
Molecular Mechanics
nanoscience and nanotechnology
New technology
quantum confinement
Simulation
Solvation
Transport properties
title Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cation−π Interaction, and Confinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Solvation%20and%20Transport%20in%20Narrow%20Carbon%20Nanotubes:%20Effects%20of%20Polarizability,%20Cation%E2%88%92%CF%80%20Interaction,%20and%20Confinement&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Aydin,%20Fikret&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-03-09&rft.volume=17&rft.issue=3&rft.spage=1596&rft.epage=1605&rft.pages=1596-1605&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00827&rft_dat=%3Cproquest_osti_%3E2511372932%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511372932&rft_id=info:pmid/33625224&rfr_iscdi=true