A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage

•An efficient and effective modeling scheme for thermo-hydro-mechanical processes in fluid-driven fracturing.•Self-stabilizing features of leak-off dominated regime alleviated numerical difficulties.•A high-fidelity tool to evaluate complex CO2 injection scenarios for marginal-permeability reservoir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of greenhouse gas control 2021-07, Vol.109 (C), p.103379, Article 103379
Hauptverfasser: Ju, Xin, Fu, Pengcheng, Settegast, Randolph R., Morris, Joseph P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 103379
container_title International journal of greenhouse gas control
container_volume 109
creator Ju, Xin
Fu, Pengcheng
Settegast, Randolph R.
Morris, Joseph P.
description •An efficient and effective modeling scheme for thermo-hydro-mechanical processes in fluid-driven fracturing.•Self-stabilizing features of leak-off dominated regime alleviated numerical difficulties.•A high-fidelity tool to evaluate complex CO2 injection scenarios for marginal-permeability reservoir.•Revealed intriguing behaviors of reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. A potential risk of injecting CO2 into storage reservoirs with marginal permeability (≲ 10 mD (1 mD = 10−15 m2)) is that commercial injection rates could induce fracturing of the reservoir and/or the caprock. Such fracturing is essentially fluid-driven fracturing in the leakoff-dominated regime. Recent studies suggested that fracturing, if contained within the lower portion of the caprock complex, could substantially improve the injectivity without compromising the overall seal integrity. Modeling this phenomenon entails complex coupled interactions among the fluids, the fracture, the reservoir, and the caprock. We develop a simple method to capture all these interplays in high fidelity by sequentially coupling a hydraulic fracturing module with a coupled thermal-hydrological-mechanical (THM) model for nonisothermal multiphase flow. The model was made numerically tractable by taking advantage of self-stabilizing features of leakoff-dominated fracturing. The model is validated against the PKN solution in the leakoff-dominated regime. Moreover, we employ the model to study thermo-poromechanical responses of a fluid-driven fracture in a field-scale carbon storage reservoir that is loosely based on the In Salah project's Krechba reservoir. The model reveals complex yet intriguing behaviors of the reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. We also study the effects of the in situ stress contrast between the reservoir and caprock and thermal contraction on the vertical containment of the fracture. The proposed model proves effective in simulating practical problems on length and time scales relevant to geological carbon storage.
doi_str_mv 10.1016/j.ijggc.2021.103379
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1797624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1750583621001316</els_id><sourcerecordid>S1750583621001316</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-61bf59690990dd3904277d0c29974d5ff300c92af903e0761d4b7dddf727d56f3</originalsourceid><addsrcrecordid>eNp9kM1OxCAUhRujiePoE7gh7hmhtKUsXEwm_iWTuNE1YfhpqW1pgNH4CL611Lp2dW8O5zu5nCy7xmiDEa5uu43tmkZucpTjpBBC2Um2wjWtIcJFfZp2WiJY1qQ6zy5C6BCqcHpYZd9bIN1x6rUCsdV-cLD9Ut7BQctWjFaKHgxO6R4Y50Gww7EX0Y4N6LV4d8ZA5QY7ipjwmRPH3kpgvJDx6Gfbp40tENOU5MS5EUQHGu161ySfFP6QpBCdF42-zM6M6IO--pvr7O3h_nX3BPcvj8-77R4KwuoIK3wwJasYYgwpRRgqckoVkjljtFClMQQhyXJhGCIa0Qqr4kCVUobmVJWVIevsZsl1IVoepI3pq9KNo5aRY8polRfJRBaT9C4Erw2fvB2E_-IY8bly3vHfyvlcOV8qT9TdQul0_4fVfo7Xo9TK-jldOfsv_wO4b436</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage</title><source>Elsevier ScienceDirect Journals</source><creator>Ju, Xin ; Fu, Pengcheng ; Settegast, Randolph R. ; Morris, Joseph P.</creator><creatorcontrib>Ju, Xin ; Fu, Pengcheng ; Settegast, Randolph R. ; Morris, Joseph P.</creatorcontrib><description>•An efficient and effective modeling scheme for thermo-hydro-mechanical processes in fluid-driven fracturing.•Self-stabilizing features of leak-off dominated regime alleviated numerical difficulties.•A high-fidelity tool to evaluate complex CO2 injection scenarios for marginal-permeability reservoir.•Revealed intriguing behaviors of reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. A potential risk of injecting CO2 into storage reservoirs with marginal permeability (≲ 10 mD (1 mD = 10−15 m2)) is that commercial injection rates could induce fracturing of the reservoir and/or the caprock. Such fracturing is essentially fluid-driven fracturing in the leakoff-dominated regime. Recent studies suggested that fracturing, if contained within the lower portion of the caprock complex, could substantially improve the injectivity without compromising the overall seal integrity. Modeling this phenomenon entails complex coupled interactions among the fluids, the fracture, the reservoir, and the caprock. We develop a simple method to capture all these interplays in high fidelity by sequentially coupling a hydraulic fracturing module with a coupled thermal-hydrological-mechanical (THM) model for nonisothermal multiphase flow. The model was made numerically tractable by taking advantage of self-stabilizing features of leakoff-dominated fracturing. The model is validated against the PKN solution in the leakoff-dominated regime. Moreover, we employ the model to study thermo-poromechanical responses of a fluid-driven fracture in a field-scale carbon storage reservoir that is loosely based on the In Salah project's Krechba reservoir. The model reveals complex yet intriguing behaviors of the reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. We also study the effects of the in situ stress contrast between the reservoir and caprock and thermal contraction on the vertical containment of the fracture. The proposed model proves effective in simulating practical problems on length and time scales relevant to geological carbon storage.</description><identifier>ISSN: 1750-5836</identifier><identifier>EISSN: 1878-0148</identifier><identifier>DOI: 10.1016/j.ijggc.2021.103379</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Co2 fracturing ; Geologic carbon storage ; Multiphase multicomponent fluid flow ; Supercritical co2 ; Thm coupled modeling</subject><ispartof>International journal of greenhouse gas control, 2021-07, Vol.109 (C), p.103379, Article 103379</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-61bf59690990dd3904277d0c29974d5ff300c92af903e0761d4b7dddf727d56f3</citedby><cites>FETCH-LOGICAL-a398t-61bf59690990dd3904277d0c29974d5ff300c92af903e0761d4b7dddf727d56f3</cites><orcidid>0000-0002-7408-3350 ; 0000-0003-4110-7472 ; 0000-0002-5085-2565 ; 0000000250852565 ; 0000000341107472 ; 0000000274083350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1750583621001316$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1797624$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Xin</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><creatorcontrib>Settegast, Randolph R.</creatorcontrib><creatorcontrib>Morris, Joseph P.</creatorcontrib><title>A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage</title><title>International journal of greenhouse gas control</title><description>•An efficient and effective modeling scheme for thermo-hydro-mechanical processes in fluid-driven fracturing.•Self-stabilizing features of leak-off dominated regime alleviated numerical difficulties.•A high-fidelity tool to evaluate complex CO2 injection scenarios for marginal-permeability reservoir.•Revealed intriguing behaviors of reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. A potential risk of injecting CO2 into storage reservoirs with marginal permeability (≲ 10 mD (1 mD = 10−15 m2)) is that commercial injection rates could induce fracturing of the reservoir and/or the caprock. Such fracturing is essentially fluid-driven fracturing in the leakoff-dominated regime. Recent studies suggested that fracturing, if contained within the lower portion of the caprock complex, could substantially improve the injectivity without compromising the overall seal integrity. Modeling this phenomenon entails complex coupled interactions among the fluids, the fracture, the reservoir, and the caprock. We develop a simple method to capture all these interplays in high fidelity by sequentially coupling a hydraulic fracturing module with a coupled thermal-hydrological-mechanical (THM) model for nonisothermal multiphase flow. The model was made numerically tractable by taking advantage of self-stabilizing features of leakoff-dominated fracturing. The model is validated against the PKN solution in the leakoff-dominated regime. Moreover, we employ the model to study thermo-poromechanical responses of a fluid-driven fracture in a field-scale carbon storage reservoir that is loosely based on the In Salah project's Krechba reservoir. The model reveals complex yet intriguing behaviors of the reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. We also study the effects of the in situ stress contrast between the reservoir and caprock and thermal contraction on the vertical containment of the fracture. The proposed model proves effective in simulating practical problems on length and time scales relevant to geological carbon storage.</description><subject>Co2 fracturing</subject><subject>Geologic carbon storage</subject><subject>Multiphase multicomponent fluid flow</subject><subject>Supercritical co2</subject><subject>Thm coupled modeling</subject><issn>1750-5836</issn><issn>1878-0148</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAUhRujiePoE7gh7hmhtKUsXEwm_iWTuNE1YfhpqW1pgNH4CL611Lp2dW8O5zu5nCy7xmiDEa5uu43tmkZucpTjpBBC2Um2wjWtIcJFfZp2WiJY1qQ6zy5C6BCqcHpYZd9bIN1x6rUCsdV-cLD9Ut7BQctWjFaKHgxO6R4Y50Gww7EX0Y4N6LV4d8ZA5QY7ipjwmRPH3kpgvJDx6Gfbp40tENOU5MS5EUQHGu161ySfFP6QpBCdF42-zM6M6IO--pvr7O3h_nX3BPcvj8-77R4KwuoIK3wwJasYYgwpRRgqckoVkjljtFClMQQhyXJhGCIa0Qqr4kCVUobmVJWVIevsZsl1IVoepI3pq9KNo5aRY8polRfJRBaT9C4Erw2fvB2E_-IY8bly3vHfyvlcOV8qT9TdQul0_4fVfo7Xo9TK-jldOfsv_wO4b436</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ju, Xin</creator><creator>Fu, Pengcheng</creator><creator>Settegast, Randolph R.</creator><creator>Morris, Joseph P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7408-3350</orcidid><orcidid>https://orcid.org/0000-0003-4110-7472</orcidid><orcidid>https://orcid.org/0000-0002-5085-2565</orcidid><orcidid>https://orcid.org/0000000250852565</orcidid><orcidid>https://orcid.org/0000000341107472</orcidid><orcidid>https://orcid.org/0000000274083350</orcidid></search><sort><creationdate>20210701</creationdate><title>A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage</title><author>Ju, Xin ; Fu, Pengcheng ; Settegast, Randolph R. ; Morris, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-61bf59690990dd3904277d0c29974d5ff300c92af903e0761d4b7dddf727d56f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Co2 fracturing</topic><topic>Geologic carbon storage</topic><topic>Multiphase multicomponent fluid flow</topic><topic>Supercritical co2</topic><topic>Thm coupled modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Xin</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><creatorcontrib>Settegast, Randolph R.</creatorcontrib><creatorcontrib>Morris, Joseph P.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International journal of greenhouse gas control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Xin</au><au>Fu, Pengcheng</au><au>Settegast, Randolph R.</au><au>Morris, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage</atitle><jtitle>International journal of greenhouse gas control</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>109</volume><issue>C</issue><spage>103379</spage><pages>103379-</pages><artnum>103379</artnum><issn>1750-5836</issn><eissn>1878-0148</eissn><abstract>•An efficient and effective modeling scheme for thermo-hydro-mechanical processes in fluid-driven fracturing.•Self-stabilizing features of leak-off dominated regime alleviated numerical difficulties.•A high-fidelity tool to evaluate complex CO2 injection scenarios for marginal-permeability reservoir.•Revealed intriguing behaviors of reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. A potential risk of injecting CO2 into storage reservoirs with marginal permeability (≲ 10 mD (1 mD = 10−15 m2)) is that commercial injection rates could induce fracturing of the reservoir and/or the caprock. Such fracturing is essentially fluid-driven fracturing in the leakoff-dominated regime. Recent studies suggested that fracturing, if contained within the lower portion of the caprock complex, could substantially improve the injectivity without compromising the overall seal integrity. Modeling this phenomenon entails complex coupled interactions among the fluids, the fracture, the reservoir, and the caprock. We develop a simple method to capture all these interplays in high fidelity by sequentially coupling a hydraulic fracturing module with a coupled thermal-hydrological-mechanical (THM) model for nonisothermal multiphase flow. The model was made numerically tractable by taking advantage of self-stabilizing features of leakoff-dominated fracturing. The model is validated against the PKN solution in the leakoff-dominated regime. Moreover, we employ the model to study thermo-poromechanical responses of a fluid-driven fracture in a field-scale carbon storage reservoir that is loosely based on the In Salah project's Krechba reservoir. The model reveals complex yet intriguing behaviors of the reservoir-caprock-fluid system with fracturing induced by cold CO2 injection. We also study the effects of the in situ stress contrast between the reservoir and caprock and thermal contraction on the vertical containment of the fracture. The proposed model proves effective in simulating practical problems on length and time scales relevant to geological carbon storage.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijggc.2021.103379</doi><orcidid>https://orcid.org/0000-0002-7408-3350</orcidid><orcidid>https://orcid.org/0000-0003-4110-7472</orcidid><orcidid>https://orcid.org/0000-0002-5085-2565</orcidid><orcidid>https://orcid.org/0000000250852565</orcidid><orcidid>https://orcid.org/0000000341107472</orcidid><orcidid>https://orcid.org/0000000274083350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1750-5836
ispartof International journal of greenhouse gas control, 2021-07, Vol.109 (C), p.103379, Article 103379
issn 1750-5836
1878-0148
language eng
recordid cdi_osti_scitechconnect_1797624
source Elsevier ScienceDirect Journals
subjects Co2 fracturing
Geologic carbon storage
Multiphase multicomponent fluid flow
Supercritical co2
Thm coupled modeling
title A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coupled%20thermo-hydro-mechanical%20model%20for%20simulating%20leakoff-dominated%20hydraulic%20fracturing%20with%20application%20to%20geologic%20carbon%20storage&rft.jtitle=International%20journal%20of%20greenhouse%20gas%20control&rft.au=Ju,%20Xin&rft.date=2021-07-01&rft.volume=109&rft.issue=C&rft.spage=103379&rft.pages=103379-&rft.artnum=103379&rft.issn=1750-5836&rft.eissn=1878-0148&rft_id=info:doi/10.1016/j.ijggc.2021.103379&rft_dat=%3Celsevier_osti_%3ES1750583621001316%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1750583621001316&rfr_iscdi=true