Numerical results for adaptive (negative norm) constrained first order system least squares formulations

We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2021-08, Vol.95 (C), p.256-270
Hauptverfasser: Schafelner, Andreas, Vassilevski, Panayot S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue C
container_start_page 256
container_title Computers & mathematics with applications (1987)
container_volume 95
creator Schafelner, Andreas
Vassilevski, Panayot S.
description We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions.
doi_str_mv 10.1016/j.camwa.2020.08.025
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1787920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120303394</els_id><sourcerecordid>2553857256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</originalsourceid><addsrcrecordid>eNp9kM1u1TAQhS0EEpfCE7CxYAOLhLFdx86CBar4kyrYwNpy7DH1VRLf2k6rvj1OL2tWMxqd7-jMIeQ1g54BGz4ce2eXe9tz4NCD7oHLJ-TAtBKdGgb9lBxAj7pjnLPn5EUpRwC4FBwO5ObHtmCOzs40Y9nmWmhImVpvTzXeIX234h_7uK0pL--pS2up2cYVPQ0xl0pT9phpeSgVFzqjbadyu9nmtjst29zwBr0kz4KdC776Ny_I7y-ff119665_fv1-9em6c5cgamf1IMGFQQXhJeKk2GhHF7x3EsKkBgZinPwUGAuK-2EQSmjuJgvKKpBBiAvy5uybSo2muFjR3bTUK7pqmNJq5NBEb8-iU063G5ZqjmnLa8tluJRCS8Xl0FTirHI5lZIxmFOOi80PhoHZezdH89i72Xs3oE3rvVEfzxS2L-8i5j0Erg59zHsGn-J_-b90eY6O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553857256</pqid></control><display><type>article</type><title>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schafelner, Andreas ; Vassilevski, Panayot S.</creator><creatorcontrib>Schafelner, Andreas ; Vassilevski, Panayot S. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.08.025</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptivity ; CFOSLS ; Constraints ; Finite element method ; Grid refinement (mathematics) ; Least squares ; MATHEMATICS AND COMPUTING ; Space–time</subject><ispartof>Computers &amp; mathematics with applications (1987), 2021-08, Vol.95 (C), p.256-270</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Aug 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</citedby><cites>FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</cites><orcidid>0000-0001-7997-1165 ; 0000000179971165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2020.08.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1787920$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schafelner, Andreas</creatorcontrib><creatorcontrib>Vassilevski, Panayot S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</title><title>Computers &amp; mathematics with applications (1987)</title><description>We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions.</description><subject>Adaptivity</subject><subject>CFOSLS</subject><subject>Constraints</subject><subject>Finite element method</subject><subject>Grid refinement (mathematics)</subject><subject>Least squares</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Space–time</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1TAQhS0EEpfCE7CxYAOLhLFdx86CBar4kyrYwNpy7DH1VRLf2k6rvj1OL2tWMxqd7-jMIeQ1g54BGz4ce2eXe9tz4NCD7oHLJ-TAtBKdGgb9lBxAj7pjnLPn5EUpRwC4FBwO5ObHtmCOzs40Y9nmWmhImVpvTzXeIX234h_7uK0pL--pS2up2cYVPQ0xl0pT9phpeSgVFzqjbadyu9nmtjst29zwBr0kz4KdC776Ny_I7y-ff119665_fv1-9em6c5cgamf1IMGFQQXhJeKk2GhHF7x3EsKkBgZinPwUGAuK-2EQSmjuJgvKKpBBiAvy5uybSo2muFjR3bTUK7pqmNJq5NBEb8-iU063G5ZqjmnLa8tluJRCS8Xl0FTirHI5lZIxmFOOi80PhoHZezdH89i72Xs3oE3rvVEfzxS2L-8i5j0Erg59zHsGn-J_-b90eY6O</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Schafelner, Andreas</creator><creator>Vassilevski, Panayot S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7997-1165</orcidid><orcidid>https://orcid.org/0000000179971165</orcidid></search><sort><creationdate>20210801</creationdate><title>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</title><author>Schafelner, Andreas ; Vassilevski, Panayot S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptivity</topic><topic>CFOSLS</topic><topic>Constraints</topic><topic>Finite element method</topic><topic>Grid refinement (mathematics)</topic><topic>Least squares</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Space–time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schafelner, Andreas</creatorcontrib><creatorcontrib>Vassilevski, Panayot S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schafelner, Andreas</au><au>Vassilevski, Panayot S.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>95</volume><issue>C</issue><spage>256</spage><epage>270</epage><pages>256-270</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.08.025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7997-1165</orcidid><orcidid>https://orcid.org/0000000179971165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2021-08, Vol.95 (C), p.256-270
issn 0898-1221
1873-7668
language eng
recordid cdi_osti_scitechconnect_1787920
source ScienceDirect Journals (5 years ago - present)
subjects Adaptivity
CFOSLS
Constraints
Finite element method
Grid refinement (mathematics)
Least squares
MATHEMATICS AND COMPUTING
Space–time
title Numerical results for adaptive (negative norm) constrained first order system least squares formulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20results%20for%20adaptive%20(negative%20norm)%20constrained%20first%20order%20system%20least%20squares%20formulations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Schafelner,%20Andreas&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-08-01&rft.volume=95&rft.issue=C&rft.spage=256&rft.epage=270&rft.pages=256-270&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.08.025&rft_dat=%3Cproquest_osti_%3E2553857256%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553857256&rft_id=info:pmid/&rft_els_id=S0898122120303394&rfr_iscdi=true