Numerical results for adaptive (negative norm) constrained first order system least squares formulations
We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The A...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2021-08, Vol.95 (C), p.256-270 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | C |
container_start_page | 256 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 95 |
creator | Schafelner, Andreas Vassilevski, Panayot S. |
description | We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions. |
doi_str_mv | 10.1016/j.camwa.2020.08.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1787920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120303394</els_id><sourcerecordid>2553857256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</originalsourceid><addsrcrecordid>eNp9kM1u1TAQhS0EEpfCE7CxYAOLhLFdx86CBar4kyrYwNpy7DH1VRLf2k6rvj1OL2tWMxqd7-jMIeQ1g54BGz4ce2eXe9tz4NCD7oHLJ-TAtBKdGgb9lBxAj7pjnLPn5EUpRwC4FBwO5ObHtmCOzs40Y9nmWmhImVpvTzXeIX234h_7uK0pL--pS2up2cYVPQ0xl0pT9phpeSgVFzqjbadyu9nmtjst29zwBr0kz4KdC776Ny_I7y-ff119665_fv1-9em6c5cgamf1IMGFQQXhJeKk2GhHF7x3EsKkBgZinPwUGAuK-2EQSmjuJgvKKpBBiAvy5uybSo2muFjR3bTUK7pqmNJq5NBEb8-iU063G5ZqjmnLa8tluJRCS8Xl0FTirHI5lZIxmFOOi80PhoHZezdH89i72Xs3oE3rvVEfzxS2L-8i5j0Erg59zHsGn-J_-b90eY6O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553857256</pqid></control><display><type>article</type><title>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schafelner, Andreas ; Vassilevski, Panayot S.</creator><creatorcontrib>Schafelner, Andreas ; Vassilevski, Panayot S. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.08.025</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptivity ; CFOSLS ; Constraints ; Finite element method ; Grid refinement (mathematics) ; Least squares ; MATHEMATICS AND COMPUTING ; Space–time</subject><ispartof>Computers & mathematics with applications (1987), 2021-08, Vol.95 (C), p.256-270</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Aug 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</citedby><cites>FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</cites><orcidid>0000-0001-7997-1165 ; 0000000179971165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2020.08.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1787920$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schafelner, Andreas</creatorcontrib><creatorcontrib>Vassilevski, Panayot S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</title><title>Computers & mathematics with applications (1987)</title><description>We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions.</description><subject>Adaptivity</subject><subject>CFOSLS</subject><subject>Constraints</subject><subject>Finite element method</subject><subject>Grid refinement (mathematics)</subject><subject>Least squares</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Space–time</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1TAQhS0EEpfCE7CxYAOLhLFdx86CBar4kyrYwNpy7DH1VRLf2k6rvj1OL2tWMxqd7-jMIeQ1g54BGz4ce2eXe9tz4NCD7oHLJ-TAtBKdGgb9lBxAj7pjnLPn5EUpRwC4FBwO5ObHtmCOzs40Y9nmWmhImVpvTzXeIX234h_7uK0pL--pS2up2cYVPQ0xl0pT9phpeSgVFzqjbadyu9nmtjst29zwBr0kz4KdC776Ny_I7y-ff119665_fv1-9em6c5cgamf1IMGFQQXhJeKk2GhHF7x3EsKkBgZinPwUGAuK-2EQSmjuJgvKKpBBiAvy5uybSo2muFjR3bTUK7pqmNJq5NBEb8-iU063G5ZqjmnLa8tluJRCS8Xl0FTirHI5lZIxmFOOi80PhoHZezdH89i72Xs3oE3rvVEfzxS2L-8i5j0Erg59zHsGn-J_-b90eY6O</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Schafelner, Andreas</creator><creator>Vassilevski, Panayot S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7997-1165</orcidid><orcidid>https://orcid.org/0000000179971165</orcidid></search><sort><creationdate>20210801</creationdate><title>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</title><author>Schafelner, Andreas ; Vassilevski, Panayot S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a8650cf67f3d5eeb719a9cfddc50fb761039bdbf11f72d6637382cba07a705f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptivity</topic><topic>CFOSLS</topic><topic>Constraints</topic><topic>Finite element method</topic><topic>Grid refinement (mathematics)</topic><topic>Least squares</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Space–time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schafelner, Andreas</creatorcontrib><creatorcontrib>Vassilevski, Panayot S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schafelner, Andreas</au><au>Vassilevski, Panayot S.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical results for adaptive (negative norm) constrained first order system least squares formulations</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>95</volume><issue>C</issue><spage>256</spage><epage>270</epage><pages>256-270</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We perform a followup computational study of the recently proposed space–time first order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS where we now combine it with the new capability we have developed, namely, parallel adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory demand in the combined space time domain and also allows general (4D) meshes that better follow the physics in space–time. With an extensive set of computational experiments, performed in parallel, we demonstrate the feasibility of the combined space–time AMR approach in both two space plus time and three space plus time dimensions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.08.025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7997-1165</orcidid><orcidid>https://orcid.org/0000000179971165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2021-08, Vol.95 (C), p.256-270 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_osti_scitechconnect_1787920 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adaptivity CFOSLS Constraints Finite element method Grid refinement (mathematics) Least squares MATHEMATICS AND COMPUTING Space–time |
title | Numerical results for adaptive (negative norm) constrained first order system least squares formulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20results%20for%20adaptive%20(negative%20norm)%20constrained%20first%20order%20system%20least%20squares%20formulations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Schafelner,%20Andreas&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-08-01&rft.volume=95&rft.issue=C&rft.spage=256&rft.epage=270&rft.pages=256-270&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.08.025&rft_dat=%3Cproquest_osti_%3E2553857256%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553857256&rft_id=info:pmid/&rft_els_id=S0898122120303394&rfr_iscdi=true |