Observation of a prethermal discrete time crystal

Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-06, Vol.372 (6547), p.1192-1196
Hauptverfasser: Kyprianidis, A., Machado, F., Morong, W., Becker, P., Collins, K. S., Else, D. V., Feng, L., Hess, P. W., Nayak, C., Pagano, G., Yao, N. Y., Monroe, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1196
container_issue 6547
container_start_page 1192
container_title Science (American Association for the Advancement of Science)
container_volume 372
creator Kyprianidis, A.
Machado, F.
Morong, W.
Becker, P.
Collins, K. S.
Else, D. V.
Feng, L.
Hess, P. W.
Nayak, C.
Pagano, G.
Yao, N. Y.
Monroe, C.
description Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis et al. used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter. Science , abg8102, this issue p. 1192 An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal. Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.
doi_str_mv 10.1126/science.abg8102
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1787715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540513578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</originalsourceid><addsrcrecordid>eNpd0D1rwzAQBmBRWmj6MXc17dLFiaSTbGssoV8QyNLOQpZPjYNtpZJSyL-vSjJ1Oo57OO5eQu4YnTPGq0W0PU4W56b9ahjlZ2TGqJKl4hTOyYxSqMqG1vKSXMW4pTTPFMwIW7cRw49JvZ8K7wpT7AKmDYbRDEXXR5s7LFI_YmHDISYz3JALZ4aIt6d6TT5fnj-Wb-Vq_fq-fFqVFpRMZaOcMlUHnErTATUtVyAtd8IiOGFQcOqo4LazprItsy2opnVKdAKF6STANbk_7vUx9Tp_l9BurJ8mtEmzuqlrJjN6PKJd8N97jEmP-WYcBjOh30fNpaCSgaybTB_-0a3fhym_kBUoBRVIkdXiqGzwMQZ0ehf60YSDZlT_5axPOetTzvALMS1yBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539936354</pqid></control><display><type>article</type><title>Observation of a prethermal discrete time crystal</title><source>Science Magazine</source><creator>Kyprianidis, A. ; Machado, F. ; Morong, W. ; Becker, P. ; Collins, K. S. ; Else, D. V. ; Feng, L. ; Hess, P. W. ; Nayak, C. ; Pagano, G. ; Yao, N. Y. ; Monroe, C.</creator><creatorcontrib>Kyprianidis, A. ; Machado, F. ; Morong, W. ; Becker, P. ; Collins, K. S. ; Else, D. V. ; Feng, L. ; Hess, P. W. ; Nayak, C. ; Pagano, G. ; Yao, N. Y. ; Monroe, C. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis et al. used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter. Science , abg8102, this issue p. 1192 An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal. Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abg8102</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Crystals ; Heat ; Heating ; Localization ; Many body problem ; Phases ; Quantum theory ; Qubits (quantum computing) ; Simulation ; Thermalization (energy absorption) ; Windows (intervals)</subject><ispartof>Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1192-1196</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</citedby><cites>FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</cites><orcidid>0000-0003-0068-5073 ; 0000-0001-8102-3420 ; 0000-0003-2985-4221 ; 0000-0002-7751-0100 ; 0000-0002-7786-9447 ; 0000-0002-6159-8013 ; 0000-0003-4880-8159 ; 0000-0002-6760-4015 ; 0000-0003-0551-3713 ; 0000-0002-7046-1852 ; 0000-0003-0194-7266 ; 0000000277510100 ; 0000000300685073 ; 0000000267604015 ; 0000000277869447 ; 0000000261598013 ; 0000000329854221 ; 0000000270461852 ; 0000000348808159 ; 0000000301947266 ; 0000000181023420 ; 0000000305513713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1787715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyprianidis, A.</creatorcontrib><creatorcontrib>Machado, F.</creatorcontrib><creatorcontrib>Morong, W.</creatorcontrib><creatorcontrib>Becker, P.</creatorcontrib><creatorcontrib>Collins, K. S.</creatorcontrib><creatorcontrib>Else, D. V.</creatorcontrib><creatorcontrib>Feng, L.</creatorcontrib><creatorcontrib>Hess, P. W.</creatorcontrib><creatorcontrib>Nayak, C.</creatorcontrib><creatorcontrib>Pagano, G.</creatorcontrib><creatorcontrib>Yao, N. Y.</creatorcontrib><creatorcontrib>Monroe, C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Observation of a prethermal discrete time crystal</title><title>Science (American Association for the Advancement of Science)</title><description>Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis et al. used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter. Science , abg8102, this issue p. 1192 An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal. Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Crystals</subject><subject>Heat</subject><subject>Heating</subject><subject>Localization</subject><subject>Many body problem</subject><subject>Phases</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Thermalization (energy absorption)</subject><subject>Windows (intervals)</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0D1rwzAQBmBRWmj6MXc17dLFiaSTbGssoV8QyNLOQpZPjYNtpZJSyL-vSjJ1Oo57OO5eQu4YnTPGq0W0PU4W56b9ahjlZ2TGqJKl4hTOyYxSqMqG1vKSXMW4pTTPFMwIW7cRw49JvZ8K7wpT7AKmDYbRDEXXR5s7LFI_YmHDISYz3JALZ4aIt6d6TT5fnj-Wb-Vq_fq-fFqVFpRMZaOcMlUHnErTATUtVyAtd8IiOGFQcOqo4LazprItsy2opnVKdAKF6STANbk_7vUx9Tp_l9BurJ8mtEmzuqlrJjN6PKJd8N97jEmP-WYcBjOh30fNpaCSgaybTB_-0a3fhym_kBUoBRVIkdXiqGzwMQZ0ehf60YSDZlT_5axPOetTzvALMS1yBg</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Kyprianidis, A.</creator><creator>Machado, F.</creator><creator>Morong, W.</creator><creator>Becker, P.</creator><creator>Collins, K. S.</creator><creator>Else, D. V.</creator><creator>Feng, L.</creator><creator>Hess, P. W.</creator><creator>Nayak, C.</creator><creator>Pagano, G.</creator><creator>Yao, N. Y.</creator><creator>Monroe, C.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0068-5073</orcidid><orcidid>https://orcid.org/0000-0001-8102-3420</orcidid><orcidid>https://orcid.org/0000-0003-2985-4221</orcidid><orcidid>https://orcid.org/0000-0002-7751-0100</orcidid><orcidid>https://orcid.org/0000-0002-7786-9447</orcidid><orcidid>https://orcid.org/0000-0002-6159-8013</orcidid><orcidid>https://orcid.org/0000-0003-4880-8159</orcidid><orcidid>https://orcid.org/0000-0002-6760-4015</orcidid><orcidid>https://orcid.org/0000-0003-0551-3713</orcidid><orcidid>https://orcid.org/0000-0002-7046-1852</orcidid><orcidid>https://orcid.org/0000-0003-0194-7266</orcidid><orcidid>https://orcid.org/0000000277510100</orcidid><orcidid>https://orcid.org/0000000300685073</orcidid><orcidid>https://orcid.org/0000000267604015</orcidid><orcidid>https://orcid.org/0000000277869447</orcidid><orcidid>https://orcid.org/0000000261598013</orcidid><orcidid>https://orcid.org/0000000329854221</orcidid><orcidid>https://orcid.org/0000000270461852</orcidid><orcidid>https://orcid.org/0000000348808159</orcidid><orcidid>https://orcid.org/0000000301947266</orcidid><orcidid>https://orcid.org/0000000181023420</orcidid><orcidid>https://orcid.org/0000000305513713</orcidid></search><sort><creationdate>20210611</creationdate><title>Observation of a prethermal discrete time crystal</title><author>Kyprianidis, A. ; Machado, F. ; Morong, W. ; Becker, P. ; Collins, K. S. ; Else, D. V. ; Feng, L. ; Hess, P. W. ; Nayak, C. ; Pagano, G. ; Yao, N. Y. ; Monroe, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Crystals</topic><topic>Heat</topic><topic>Heating</topic><topic>Localization</topic><topic>Many body problem</topic><topic>Phases</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Thermalization (energy absorption)</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyprianidis, A.</creatorcontrib><creatorcontrib>Machado, F.</creatorcontrib><creatorcontrib>Morong, W.</creatorcontrib><creatorcontrib>Becker, P.</creatorcontrib><creatorcontrib>Collins, K. S.</creatorcontrib><creatorcontrib>Else, D. V.</creatorcontrib><creatorcontrib>Feng, L.</creatorcontrib><creatorcontrib>Hess, P. W.</creatorcontrib><creatorcontrib>Nayak, C.</creatorcontrib><creatorcontrib>Pagano, G.</creatorcontrib><creatorcontrib>Yao, N. Y.</creatorcontrib><creatorcontrib>Monroe, C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyprianidis, A.</au><au>Machado, F.</au><au>Morong, W.</au><au>Becker, P.</au><au>Collins, K. S.</au><au>Else, D. V.</au><au>Feng, L.</au><au>Hess, P. W.</au><au>Nayak, C.</au><au>Pagano, G.</au><au>Yao, N. Y.</au><au>Monroe, C.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of a prethermal discrete time crystal</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-06-11</date><risdate>2021</risdate><volume>372</volume><issue>6547</issue><spage>1192</spage><epage>1196</epage><pages>1192-1196</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis et al. used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter. Science , abg8102, this issue p. 1192 An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal. Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abg8102</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0068-5073</orcidid><orcidid>https://orcid.org/0000-0001-8102-3420</orcidid><orcidid>https://orcid.org/0000-0003-2985-4221</orcidid><orcidid>https://orcid.org/0000-0002-7751-0100</orcidid><orcidid>https://orcid.org/0000-0002-7786-9447</orcidid><orcidid>https://orcid.org/0000-0002-6159-8013</orcidid><orcidid>https://orcid.org/0000-0003-4880-8159</orcidid><orcidid>https://orcid.org/0000-0002-6760-4015</orcidid><orcidid>https://orcid.org/0000-0003-0551-3713</orcidid><orcidid>https://orcid.org/0000-0002-7046-1852</orcidid><orcidid>https://orcid.org/0000-0003-0194-7266</orcidid><orcidid>https://orcid.org/0000000277510100</orcidid><orcidid>https://orcid.org/0000000300685073</orcidid><orcidid>https://orcid.org/0000000267604015</orcidid><orcidid>https://orcid.org/0000000277869447</orcidid><orcidid>https://orcid.org/0000000261598013</orcidid><orcidid>https://orcid.org/0000000329854221</orcidid><orcidid>https://orcid.org/0000000270461852</orcidid><orcidid>https://orcid.org/0000000348808159</orcidid><orcidid>https://orcid.org/0000000301947266</orcidid><orcidid>https://orcid.org/0000000181023420</orcidid><orcidid>https://orcid.org/0000000305513713</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1192-1196
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1787715
source Science Magazine
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Crystals
Heat
Heating
Localization
Many body problem
Phases
Quantum theory
Qubits (quantum computing)
Simulation
Thermalization (energy absorption)
Windows (intervals)
title Observation of a prethermal discrete time crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20a%20prethermal%20discrete%20time%20crystal&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kyprianidis,%20A.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-06-11&rft.volume=372&rft.issue=6547&rft.spage=1192&rft.epage=1196&rft.pages=1192-1196&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abg8102&rft_dat=%3Cproquest_osti_%3E2540513578%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539936354&rft_id=info:pmid/&rfr_iscdi=true