Observation of a prethermal discrete time crystal
Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for eq...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-06, Vol.372 (6547), p.1192-1196 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1196 |
---|---|
container_issue | 6547 |
container_start_page | 1192 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 372 |
creator | Kyprianidis, A. Machado, F. Morong, W. Becker, P. Collins, K. S. Else, D. V. Feng, L. Hess, P. W. Nayak, C. Pagano, G. Yao, N. Y. Monroe, C. |
description | Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis
et al.
used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter.
Science
, abg8102, this issue p.
1192
An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal.
Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter. |
doi_str_mv | 10.1126/science.abg8102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1787715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540513578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</originalsourceid><addsrcrecordid>eNpd0D1rwzAQBmBRWmj6MXc17dLFiaSTbGssoV8QyNLOQpZPjYNtpZJSyL-vSjJ1Oo57OO5eQu4YnTPGq0W0PU4W56b9ahjlZ2TGqJKl4hTOyYxSqMqG1vKSXMW4pTTPFMwIW7cRw49JvZ8K7wpT7AKmDYbRDEXXR5s7LFI_YmHDISYz3JALZ4aIt6d6TT5fnj-Wb-Vq_fq-fFqVFpRMZaOcMlUHnErTATUtVyAtd8IiOGFQcOqo4LazprItsy2opnVKdAKF6STANbk_7vUx9Tp_l9BurJ8mtEmzuqlrJjN6PKJd8N97jEmP-WYcBjOh30fNpaCSgaybTB_-0a3fhym_kBUoBRVIkdXiqGzwMQZ0ehf60YSDZlT_5axPOetTzvALMS1yBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539936354</pqid></control><display><type>article</type><title>Observation of a prethermal discrete time crystal</title><source>Science Magazine</source><creator>Kyprianidis, A. ; Machado, F. ; Morong, W. ; Becker, P. ; Collins, K. S. ; Else, D. V. ; Feng, L. ; Hess, P. W. ; Nayak, C. ; Pagano, G. ; Yao, N. Y. ; Monroe, C.</creator><creatorcontrib>Kyprianidis, A. ; Machado, F. ; Morong, W. ; Becker, P. ; Collins, K. S. ; Else, D. V. ; Feng, L. ; Hess, P. W. ; Nayak, C. ; Pagano, G. ; Yao, N. Y. ; Monroe, C. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis
et al.
used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter.
Science
, abg8102, this issue p.
1192
An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal.
Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abg8102</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Crystals ; Heat ; Heating ; Localization ; Many body problem ; Phases ; Quantum theory ; Qubits (quantum computing) ; Simulation ; Thermalization (energy absorption) ; Windows (intervals)</subject><ispartof>Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1192-1196</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</citedby><cites>FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</cites><orcidid>0000-0003-0068-5073 ; 0000-0001-8102-3420 ; 0000-0003-2985-4221 ; 0000-0002-7751-0100 ; 0000-0002-7786-9447 ; 0000-0002-6159-8013 ; 0000-0003-4880-8159 ; 0000-0002-6760-4015 ; 0000-0003-0551-3713 ; 0000-0002-7046-1852 ; 0000-0003-0194-7266 ; 0000000277510100 ; 0000000300685073 ; 0000000267604015 ; 0000000277869447 ; 0000000261598013 ; 0000000329854221 ; 0000000270461852 ; 0000000348808159 ; 0000000301947266 ; 0000000181023420 ; 0000000305513713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1787715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyprianidis, A.</creatorcontrib><creatorcontrib>Machado, F.</creatorcontrib><creatorcontrib>Morong, W.</creatorcontrib><creatorcontrib>Becker, P.</creatorcontrib><creatorcontrib>Collins, K. S.</creatorcontrib><creatorcontrib>Else, D. V.</creatorcontrib><creatorcontrib>Feng, L.</creatorcontrib><creatorcontrib>Hess, P. W.</creatorcontrib><creatorcontrib>Nayak, C.</creatorcontrib><creatorcontrib>Pagano, G.</creatorcontrib><creatorcontrib>Yao, N. Y.</creatorcontrib><creatorcontrib>Monroe, C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Observation of a prethermal discrete time crystal</title><title>Science (American Association for the Advancement of Science)</title><description>Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis
et al.
used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter.
Science
, abg8102, this issue p.
1192
An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal.
Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Crystals</subject><subject>Heat</subject><subject>Heating</subject><subject>Localization</subject><subject>Many body problem</subject><subject>Phases</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Thermalization (energy absorption)</subject><subject>Windows (intervals)</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0D1rwzAQBmBRWmj6MXc17dLFiaSTbGssoV8QyNLOQpZPjYNtpZJSyL-vSjJ1Oo57OO5eQu4YnTPGq0W0PU4W56b9ahjlZ2TGqJKl4hTOyYxSqMqG1vKSXMW4pTTPFMwIW7cRw49JvZ8K7wpT7AKmDYbRDEXXR5s7LFI_YmHDISYz3JALZ4aIt6d6TT5fnj-Wb-Vq_fq-fFqVFpRMZaOcMlUHnErTATUtVyAtd8IiOGFQcOqo4LazprItsy2opnVKdAKF6STANbk_7vUx9Tp_l9BurJ8mtEmzuqlrJjN6PKJd8N97jEmP-WYcBjOh30fNpaCSgaybTB_-0a3fhym_kBUoBRVIkdXiqGzwMQZ0ehf60YSDZlT_5axPOetTzvALMS1yBg</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Kyprianidis, A.</creator><creator>Machado, F.</creator><creator>Morong, W.</creator><creator>Becker, P.</creator><creator>Collins, K. S.</creator><creator>Else, D. V.</creator><creator>Feng, L.</creator><creator>Hess, P. W.</creator><creator>Nayak, C.</creator><creator>Pagano, G.</creator><creator>Yao, N. Y.</creator><creator>Monroe, C.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0068-5073</orcidid><orcidid>https://orcid.org/0000-0001-8102-3420</orcidid><orcidid>https://orcid.org/0000-0003-2985-4221</orcidid><orcidid>https://orcid.org/0000-0002-7751-0100</orcidid><orcidid>https://orcid.org/0000-0002-7786-9447</orcidid><orcidid>https://orcid.org/0000-0002-6159-8013</orcidid><orcidid>https://orcid.org/0000-0003-4880-8159</orcidid><orcidid>https://orcid.org/0000-0002-6760-4015</orcidid><orcidid>https://orcid.org/0000-0003-0551-3713</orcidid><orcidid>https://orcid.org/0000-0002-7046-1852</orcidid><orcidid>https://orcid.org/0000-0003-0194-7266</orcidid><orcidid>https://orcid.org/0000000277510100</orcidid><orcidid>https://orcid.org/0000000300685073</orcidid><orcidid>https://orcid.org/0000000267604015</orcidid><orcidid>https://orcid.org/0000000277869447</orcidid><orcidid>https://orcid.org/0000000261598013</orcidid><orcidid>https://orcid.org/0000000329854221</orcidid><orcidid>https://orcid.org/0000000270461852</orcidid><orcidid>https://orcid.org/0000000348808159</orcidid><orcidid>https://orcid.org/0000000301947266</orcidid><orcidid>https://orcid.org/0000000181023420</orcidid><orcidid>https://orcid.org/0000000305513713</orcidid></search><sort><creationdate>20210611</creationdate><title>Observation of a prethermal discrete time crystal</title><author>Kyprianidis, A. ; Machado, F. ; Morong, W. ; Becker, P. ; Collins, K. S. ; Else, D. V. ; Feng, L. ; Hess, P. W. ; Nayak, C. ; Pagano, G. ; Yao, N. Y. ; Monroe, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-89f9a6d3205ad30ab2935c2f4ce3f4ae420f042cdca6cb1cb398bf94d4e4ad533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Crystals</topic><topic>Heat</topic><topic>Heating</topic><topic>Localization</topic><topic>Many body problem</topic><topic>Phases</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Thermalization (energy absorption)</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyprianidis, A.</creatorcontrib><creatorcontrib>Machado, F.</creatorcontrib><creatorcontrib>Morong, W.</creatorcontrib><creatorcontrib>Becker, P.</creatorcontrib><creatorcontrib>Collins, K. S.</creatorcontrib><creatorcontrib>Else, D. V.</creatorcontrib><creatorcontrib>Feng, L.</creatorcontrib><creatorcontrib>Hess, P. W.</creatorcontrib><creatorcontrib>Nayak, C.</creatorcontrib><creatorcontrib>Pagano, G.</creatorcontrib><creatorcontrib>Yao, N. Y.</creatorcontrib><creatorcontrib>Monroe, C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyprianidis, A.</au><au>Machado, F.</au><au>Morong, W.</au><au>Becker, P.</au><au>Collins, K. S.</au><au>Else, D. V.</au><au>Feng, L.</au><au>Hess, P. W.</au><au>Nayak, C.</au><au>Pagano, G.</au><au>Yao, N. Y.</au><au>Monroe, C.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of a prethermal discrete time crystal</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-06-11</date><risdate>2021</risdate><volume>372</volume><issue>6547</issue><spage>1192</spage><epage>1196</epage><pages>1192-1196</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Characterizing and understanding different phases of matter in equilibrium is usually associated with the process of thermalization, where the system equilibrates. Recent efforts probing nonequilibrium systems have revealed that periodic driving of the system can suppress the natural tendency for equilibration yet still form new, nonequilibrium phases. Kyprianidis
et al.
used a quantum simulator composed of 25 trapped ion qubits and spins to observe such a nonequilibrium phase of matter: the disorder-free prethermal discrete time crystal. The flexibility and tunability of their quantum simulator provide a powerful platform with which to study the exotic phases of matter.
Science
, abg8102, this issue p.
1192
An ion trap quantum simulator was used to observe signatures of a prethermal discrete time crystal.
Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abg8102</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0068-5073</orcidid><orcidid>https://orcid.org/0000-0001-8102-3420</orcidid><orcidid>https://orcid.org/0000-0003-2985-4221</orcidid><orcidid>https://orcid.org/0000-0002-7751-0100</orcidid><orcidid>https://orcid.org/0000-0002-7786-9447</orcidid><orcidid>https://orcid.org/0000-0002-6159-8013</orcidid><orcidid>https://orcid.org/0000-0003-4880-8159</orcidid><orcidid>https://orcid.org/0000-0002-6760-4015</orcidid><orcidid>https://orcid.org/0000-0003-0551-3713</orcidid><orcidid>https://orcid.org/0000-0002-7046-1852</orcidid><orcidid>https://orcid.org/0000-0003-0194-7266</orcidid><orcidid>https://orcid.org/0000000277510100</orcidid><orcidid>https://orcid.org/0000000300685073</orcidid><orcidid>https://orcid.org/0000000267604015</orcidid><orcidid>https://orcid.org/0000000277869447</orcidid><orcidid>https://orcid.org/0000000261598013</orcidid><orcidid>https://orcid.org/0000000329854221</orcidid><orcidid>https://orcid.org/0000000270461852</orcidid><orcidid>https://orcid.org/0000000348808159</orcidid><orcidid>https://orcid.org/0000000301947266</orcidid><orcidid>https://orcid.org/0000000181023420</orcidid><orcidid>https://orcid.org/0000000305513713</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1192-1196 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1787715 |
source | Science Magazine |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Crystals Heat Heating Localization Many body problem Phases Quantum theory Qubits (quantum computing) Simulation Thermalization (energy absorption) Windows (intervals) |
title | Observation of a prethermal discrete time crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20a%20prethermal%20discrete%20time%20crystal&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kyprianidis,%20A.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-06-11&rft.volume=372&rft.issue=6547&rft.spage=1192&rft.epage=1196&rft.pages=1192-1196&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abg8102&rft_dat=%3Cproquest_osti_%3E2540513578%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539936354&rft_id=info:pmid/&rfr_iscdi=true |