Molecular dynamics studies of lattice defect effects on tritium diffusion in zirconium

•Tritium affects the geometry of extended defects in a-Zr that form by point defect aggregation.•Zr self-interstitial atoms accelerate tritium diffusion.•Trapping at vacancies inhibits tritium diffusion at low temperature.•Vacancy clusters may serve as nucleation sites for hydride precipitation. Tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2021-11, Vol.555, p.153099, Article 153099
Hauptverfasser: Skelton, R., Zhou, X.W., Karnesky, R.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 153099
container_title Journal of nuclear materials
container_volume 555
creator Skelton, R.
Zhou, X.W.
Karnesky, R.A.
description •Tritium affects the geometry of extended defects in a-Zr that form by point defect aggregation.•Zr self-interstitial atoms accelerate tritium diffusion.•Trapping at vacancies inhibits tritium diffusion at low temperature.•Vacancy clusters may serve as nucleation sites for hydride precipitation. Tritium diffusion in α-Zr containing point defects such as vacancies or self-interstitial atoms (SIAs) is simulated using molecular dynamics. Point defects rapidly aggregate to form extended defects, such as 3D nanoclusters and Frank loops. The geometry of extended defects is affected by the presence of tritium. At low temperature and in the absence of tritium, vacancies aggregate to form stacking fault pyramids. Addition of tritium at these temperatures promotes aggregation of vacancies to form 3D nanoclusters, within which the tritium concentration can be sufficiently high to suggest that these defects may serve as nucleation sites for hydride precipitation. Trapping of tritium in vacancy nanocluster reduces the calculated bulk diffusivity by an amount proportional to the vacancy concentration. At high temperature, vacancy clusters change shape to form planar basal dislocation loops, which bind tritium less strongly, leading to a sharp reduction in the fraction of trapped tritium and a corresponding increase in tritium diffusivity at high temperature. In contrast, SIAs increase tritium diffusion through α-Zr. Analysis of atomic trajectories shows that tritium does not interact directly with SIAs. Diffusion enhancement is instead related to expansion of the lattice.
doi_str_mv 10.1016/j.jnucmat.2021.153099
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1787541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311521003226</els_id><sourcerecordid>2569690864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-3aebd3d1a5bb97c654eb9890200a7d9537e668ce6a4eb61fb783b15918090bb3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVJodttfkJBJGdvZ2xLtk4lLE1b2JDLkquQpTGV2bW3klzY_vrIOPecHsy8eXzzGPuKsENA-W3YDeNszybtSihxh6ICpT6wDbZNVdRtCTdsA1CWRYUoPrHPMQ4AIBSIDXt5mk5k55MJ3F1Hc_Y28phm5ynyqecnk5K3xB31ZBOnfpG8GXkKPvn5zJ3v-zn6PPEj_--DncY8_sI-9uYU6fZNt-z4-OO4_1Ucnn_-3j8cClsjpqIy1LnKoRFdpxorRU2dahWUAKZxSlQNSdlakiYvJPZd01YdCoUtKOi6asvu1tgpJq-j9Ynsn0wwZkqNTduIGrPpfjVdwvR3ppj0MM1hzFi6FFJJBa2ss0usLhumGAP1-hL82YSrRtBLzXrQbzXrpWa91pzvvq93lN_85yksGDRacj4sFG7y7yS8AnYaiRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569690864</pqid></control><display><type>article</type><title>Molecular dynamics studies of lattice defect effects on tritium diffusion in zirconium</title><source>Access via ScienceDirect (Elsevier)</source><creator>Skelton, R. ; Zhou, X.W. ; Karnesky, R.A.</creator><creatorcontrib>Skelton, R. ; Zhou, X.W. ; Karnesky, R.A. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>•Tritium affects the geometry of extended defects in a-Zr that form by point defect aggregation.•Zr self-interstitial atoms accelerate tritium diffusion.•Trapping at vacancies inhibits tritium diffusion at low temperature.•Vacancy clusters may serve as nucleation sites for hydride precipitation. Tritium diffusion in α-Zr containing point defects such as vacancies or self-interstitial atoms (SIAs) is simulated using molecular dynamics. Point defects rapidly aggregate to form extended defects, such as 3D nanoclusters and Frank loops. The geometry of extended defects is affected by the presence of tritium. At low temperature and in the absence of tritium, vacancies aggregate to form stacking fault pyramids. Addition of tritium at these temperatures promotes aggregation of vacancies to form 3D nanoclusters, within which the tritium concentration can be sufficiently high to suggest that these defects may serve as nucleation sites for hydride precipitation. Trapping of tritium in vacancy nanocluster reduces the calculated bulk diffusivity by an amount proportional to the vacancy concentration. At high temperature, vacancy clusters change shape to form planar basal dislocation loops, which bind tritium less strongly, leading to a sharp reduction in the fraction of trapped tritium and a corresponding increase in tritium diffusivity at high temperature. In contrast, SIAs increase tritium diffusion through α-Zr. Analysis of atomic trajectories shows that tritium does not interact directly with SIAs. Diffusion enhancement is instead related to expansion of the lattice.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2021.153099</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Crystal defects ; Diffusion ; Diffusion effects ; Diffusivity ; Dislocation loops ; High temperature ; Lattice defects ; Lattice vacancies ; Low temperature ; MATERIALS SCIENCE ; Molecular dynamics ; Nanoclusters ; Nucleation ; Point defects ; Pyramids ; Stacking faults ; TPBAR ; Trajectory analysis ; Tritium ; Zirconium</subject><ispartof>Journal of nuclear materials, 2021-11, Vol.555, p.153099, Article 153099</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-3aebd3d1a5bb97c654eb9890200a7d9537e668ce6a4eb61fb783b15918090bb3</citedby><cites>FETCH-LOGICAL-c411t-3aebd3d1a5bb97c654eb9890200a7d9537e668ce6a4eb61fb783b15918090bb3</cites><orcidid>0000-0003-4717-457X ; 000000034717457X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2021.153099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1787541$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Skelton, R.</creatorcontrib><creatorcontrib>Zhou, X.W.</creatorcontrib><creatorcontrib>Karnesky, R.A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Molecular dynamics studies of lattice defect effects on tritium diffusion in zirconium</title><title>Journal of nuclear materials</title><description>•Tritium affects the geometry of extended defects in a-Zr that form by point defect aggregation.•Zr self-interstitial atoms accelerate tritium diffusion.•Trapping at vacancies inhibits tritium diffusion at low temperature.•Vacancy clusters may serve as nucleation sites for hydride precipitation. Tritium diffusion in α-Zr containing point defects such as vacancies or self-interstitial atoms (SIAs) is simulated using molecular dynamics. Point defects rapidly aggregate to form extended defects, such as 3D nanoclusters and Frank loops. The geometry of extended defects is affected by the presence of tritium. At low temperature and in the absence of tritium, vacancies aggregate to form stacking fault pyramids. Addition of tritium at these temperatures promotes aggregation of vacancies to form 3D nanoclusters, within which the tritium concentration can be sufficiently high to suggest that these defects may serve as nucleation sites for hydride precipitation. Trapping of tritium in vacancy nanocluster reduces the calculated bulk diffusivity by an amount proportional to the vacancy concentration. At high temperature, vacancy clusters change shape to form planar basal dislocation loops, which bind tritium less strongly, leading to a sharp reduction in the fraction of trapped tritium and a corresponding increase in tritium diffusivity at high temperature. In contrast, SIAs increase tritium diffusion through α-Zr. Analysis of atomic trajectories shows that tritium does not interact directly with SIAs. Diffusion enhancement is instead related to expansion of the lattice.</description><subject>Crystal defects</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>Diffusivity</subject><subject>Dislocation loops</subject><subject>High temperature</subject><subject>Lattice defects</subject><subject>Lattice vacancies</subject><subject>Low temperature</subject><subject>MATERIALS SCIENCE</subject><subject>Molecular dynamics</subject><subject>Nanoclusters</subject><subject>Nucleation</subject><subject>Point defects</subject><subject>Pyramids</subject><subject>Stacking faults</subject><subject>TPBAR</subject><subject>Trajectory analysis</subject><subject>Tritium</subject><subject>Zirconium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVJodttfkJBJGdvZ2xLtk4lLE1b2JDLkquQpTGV2bW3klzY_vrIOPecHsy8eXzzGPuKsENA-W3YDeNszybtSihxh6ICpT6wDbZNVdRtCTdsA1CWRYUoPrHPMQ4AIBSIDXt5mk5k55MJ3F1Hc_Y28phm5ynyqecnk5K3xB31ZBOnfpG8GXkKPvn5zJ3v-zn6PPEj_--DncY8_sI-9uYU6fZNt-z4-OO4_1Ucnn_-3j8cClsjpqIy1LnKoRFdpxorRU2dahWUAKZxSlQNSdlakiYvJPZd01YdCoUtKOi6asvu1tgpJq-j9Ynsn0wwZkqNTduIGrPpfjVdwvR3ppj0MM1hzFi6FFJJBa2ss0usLhumGAP1-hL82YSrRtBLzXrQbzXrpWa91pzvvq93lN_85yksGDRacj4sFG7y7yS8AnYaiRg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Skelton, R.</creator><creator>Zhou, X.W.</creator><creator>Karnesky, R.A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4717-457X</orcidid><orcidid>https://orcid.org/000000034717457X</orcidid></search><sort><creationdate>20211101</creationdate><title>Molecular dynamics studies of lattice defect effects on tritium diffusion in zirconium</title><author>Skelton, R. ; Zhou, X.W. ; Karnesky, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-3aebd3d1a5bb97c654eb9890200a7d9537e668ce6a4eb61fb783b15918090bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal defects</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>Diffusivity</topic><topic>Dislocation loops</topic><topic>High temperature</topic><topic>Lattice defects</topic><topic>Lattice vacancies</topic><topic>Low temperature</topic><topic>MATERIALS SCIENCE</topic><topic>Molecular dynamics</topic><topic>Nanoclusters</topic><topic>Nucleation</topic><topic>Point defects</topic><topic>Pyramids</topic><topic>Stacking faults</topic><topic>TPBAR</topic><topic>Trajectory analysis</topic><topic>Tritium</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skelton, R.</creatorcontrib><creatorcontrib>Zhou, X.W.</creatorcontrib><creatorcontrib>Karnesky, R.A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skelton, R.</au><au>Zhou, X.W.</au><au>Karnesky, R.A.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics studies of lattice defect effects on tritium diffusion in zirconium</atitle><jtitle>Journal of nuclear materials</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>555</volume><spage>153099</spage><pages>153099-</pages><artnum>153099</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>•Tritium affects the geometry of extended defects in a-Zr that form by point defect aggregation.•Zr self-interstitial atoms accelerate tritium diffusion.•Trapping at vacancies inhibits tritium diffusion at low temperature.•Vacancy clusters may serve as nucleation sites for hydride precipitation. Tritium diffusion in α-Zr containing point defects such as vacancies or self-interstitial atoms (SIAs) is simulated using molecular dynamics. Point defects rapidly aggregate to form extended defects, such as 3D nanoclusters and Frank loops. The geometry of extended defects is affected by the presence of tritium. At low temperature and in the absence of tritium, vacancies aggregate to form stacking fault pyramids. Addition of tritium at these temperatures promotes aggregation of vacancies to form 3D nanoclusters, within which the tritium concentration can be sufficiently high to suggest that these defects may serve as nucleation sites for hydride precipitation. Trapping of tritium in vacancy nanocluster reduces the calculated bulk diffusivity by an amount proportional to the vacancy concentration. At high temperature, vacancy clusters change shape to form planar basal dislocation loops, which bind tritium less strongly, leading to a sharp reduction in the fraction of trapped tritium and a corresponding increase in tritium diffusivity at high temperature. In contrast, SIAs increase tritium diffusion through α-Zr. Analysis of atomic trajectories shows that tritium does not interact directly with SIAs. Diffusion enhancement is instead related to expansion of the lattice.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2021.153099</doi><orcidid>https://orcid.org/0000-0003-4717-457X</orcidid><orcidid>https://orcid.org/000000034717457X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2021-11, Vol.555, p.153099, Article 153099
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1787541
source Access via ScienceDirect (Elsevier)
subjects Crystal defects
Diffusion
Diffusion effects
Diffusivity
Dislocation loops
High temperature
Lattice defects
Lattice vacancies
Low temperature
MATERIALS SCIENCE
Molecular dynamics
Nanoclusters
Nucleation
Point defects
Pyramids
Stacking faults
TPBAR
Trajectory analysis
Tritium
Zirconium
title Molecular dynamics studies of lattice defect effects on tritium diffusion in zirconium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20studies%20of%20lattice%20defect%20effects%20on%20tritium%20diffusion%20in%20zirconium&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Skelton,%20R.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2021-11-01&rft.volume=555&rft.spage=153099&rft.pages=153099-&rft.artnum=153099&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2021.153099&rft_dat=%3Cproquest_osti_%3E2569690864%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569690864&rft_id=info:pmid/&rft_els_id=S0022311521003226&rfr_iscdi=true