Diffusion‐to‐Imbibition Transition in Water Sorption in Nanoporous Media: Theoretical Studies
The ability to predict multiphase fluid transport in nanoporous rocks such as shales is critical for many geoscience applications, for example unconventional hydrocarbon production, geologic carbon sequestration, and nuclear waste disposal. When the pore sizes approach nanoscales, the impact of the...
Gespeichert in:
Veröffentlicht in: | Water resources research 2021-06, Vol.57 (6), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Water resources research |
container_volume | 57 |
creator | Cihan, Abdullah Tokunaga, Tetsu K. Birkholzer, Jens T. |
description | The ability to predict multiphase fluid transport in nanoporous rocks such as shales is critical for many geoscience applications, for example unconventional hydrocarbon production, geologic carbon sequestration, and nuclear waste disposal. When the pore sizes approach nanoscales, the impact of the molecular interaction forces between fluids and solids becomes increasingly important. These forces can alter macroscopic fluid phase behavior and control transport. Recent experimental studies have shown that capillary condensation and subsequent imbibition of liquid water can occur in hydrophilic nanoporous media even if the vapor phase is at a critical relative humidity (rhcrit) well below vapor saturation. This study presents a theoretical investigation of the processes controlling adsorption, capillary condensation and imbibition in nanoporous media, using the square‐gradient classical density functional theory. The proposed theoretical model explicitly includes the relevant interaction forces among fluids and solids in macroscopic porous media. Application of the model to a relative‐humidity‐controlled water adsorption experiment is presented to demonstrate the impact of water‐pore wall attractive forces on multiphase water behavior in a hydrophilic silicon nanoporous medium. The model represents well the measured time‐dependent evolution of the water imbibition front inside the nanoporous medium and also explains the diffusion‐like water transport regimes observed at rh rhcrit. The study furthermore gives an insight on hysteresis phenomenon in adsorption and desorption isotherms.
Key Points
The square gradient theory‐based model explains diffusion‐to‐imbibition transition at a critical relative humidity in nanoporous media
The model presented has an inherent feature to represent hysteresis in adsorption and desorption isotherms
Hysteresis in the predicted isotherms is explained by the existence of the different energy barriers for adsorption and desorption |
doi_str_mv | 10.1029/2021WR029720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1787398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544891805</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3959-4a2299e0d453e0775c253d362f76e78fcb1dc31915cd3cd915c6464beb4837ed3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKs7H2DQraP5nUzcSf0rVIW20mXIZDI0pZ2MSQbpzkfwGX0Sp4yCKzf3HA4fl3sPAKcIXiKIxRWGGC2mneMY7oEBEpSmXHCyDwYQUpIiIvghOAphBSGiLOMDoG5tVbXBuvrr4zO6bow3hS1s7JJk7lUdemvrZKGi8cnM-eY3eVa1a5x3bUieTGnVdTJfGudNtFqtk1lsS2vCMTio1DqYkx8dgtf7u_noMZ28PIxHN5NUEcFEShXGQhhYUkYM5JxpzEhJMlzxzPC80gUqNUECMV0SXe40oxktTEFzwk1JhuCs3-tCtDJoG41ealfXRkeJeM6JyDvovIca795aE6JcudbX3V0SM0pzgXLIOuqip7R3IXhTycbbjfJbiaDcNS3_Nt3hpMff7dps_2XlYjqado8xQb4BbieBPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544891805</pqid></control><display><type>article</type><title>Diffusion‐to‐Imbibition Transition in Water Sorption in Nanoporous Media: Theoretical Studies</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Cihan, Abdullah ; Tokunaga, Tetsu K. ; Birkholzer, Jens T.</creator><creatorcontrib>Cihan, Abdullah ; Tokunaga, Tetsu K. ; Birkholzer, Jens T.</creatorcontrib><description>The ability to predict multiphase fluid transport in nanoporous rocks such as shales is critical for many geoscience applications, for example unconventional hydrocarbon production, geologic carbon sequestration, and nuclear waste disposal. When the pore sizes approach nanoscales, the impact of the molecular interaction forces between fluids and solids becomes increasingly important. These forces can alter macroscopic fluid phase behavior and control transport. Recent experimental studies have shown that capillary condensation and subsequent imbibition of liquid water can occur in hydrophilic nanoporous media even if the vapor phase is at a critical relative humidity (rhcrit) well below vapor saturation. This study presents a theoretical investigation of the processes controlling adsorption, capillary condensation and imbibition in nanoporous media, using the square‐gradient classical density functional theory. The proposed theoretical model explicitly includes the relevant interaction forces among fluids and solids in macroscopic porous media. Application of the model to a relative‐humidity‐controlled water adsorption experiment is presented to demonstrate the impact of water‐pore wall attractive forces on multiphase water behavior in a hydrophilic silicon nanoporous medium. The model represents well the measured time‐dependent evolution of the water imbibition front inside the nanoporous medium and also explains the diffusion‐like water transport regimes observed at rh < rhcrit and the imbibition‐like flow regimes observed at rh > rhcrit. The study furthermore gives an insight on hysteresis phenomenon in adsorption and desorption isotherms.
Key Points
The square gradient theory‐based model explains diffusion‐to‐imbibition transition at a critical relative humidity in nanoporous media
The model presented has an inherent feature to represent hysteresis in adsorption and desorption isotherms
Hysteresis in the predicted isotherms is explained by the existence of the different energy barriers for adsorption and desorption</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2021WR029720</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Adsorbed water ; Adsorption ; Carbon sequestration ; classical density functional theory ; Computational fluid dynamics ; Condensates ; Condensation ; Density functional theory ; Diffusion ; Fluids ; Forces ; Humidity ; Hydrocarbons ; Hydrophilicity ; Imbibition ; Molecular interactions ; Multiphase ; nanoporous medium ; Porous media ; Radioactive waste disposal ; Radioactive wastes ; Relative humidity ; Saturation ; Transport ; Vapor phases ; Vapors ; Waste disposal ; Water ; water adsorption ; Water transport</subject><ispartof>Water resources research, 2021-06, Vol.57 (6), p.n/a</ispartof><rights>Published 2021. This article is a U.S. Government work and is in the public domain in the USA.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3959-4a2299e0d453e0775c253d362f76e78fcb1dc31915cd3cd915c6464beb4837ed3</citedby><cites>FETCH-LOGICAL-a3959-4a2299e0d453e0775c253d362f76e78fcb1dc31915cd3cd915c6464beb4837ed3</cites><orcidid>0000-0002-4640-6693 ; 0000-0002-7989-1912 ; 0000-0003-0861-6128 ; 0000000279891912 ; 0000000308616128 ; 0000000246406693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021WR029720$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021WR029720$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11494,27903,27904,45553,45554,46447,46871</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1787398$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cihan, Abdullah</creatorcontrib><creatorcontrib>Tokunaga, Tetsu K.</creatorcontrib><creatorcontrib>Birkholzer, Jens T.</creatorcontrib><title>Diffusion‐to‐Imbibition Transition in Water Sorption in Nanoporous Media: Theoretical Studies</title><title>Water resources research</title><description>The ability to predict multiphase fluid transport in nanoporous rocks such as shales is critical for many geoscience applications, for example unconventional hydrocarbon production, geologic carbon sequestration, and nuclear waste disposal. When the pore sizes approach nanoscales, the impact of the molecular interaction forces between fluids and solids becomes increasingly important. These forces can alter macroscopic fluid phase behavior and control transport. Recent experimental studies have shown that capillary condensation and subsequent imbibition of liquid water can occur in hydrophilic nanoporous media even if the vapor phase is at a critical relative humidity (rhcrit) well below vapor saturation. This study presents a theoretical investigation of the processes controlling adsorption, capillary condensation and imbibition in nanoporous media, using the square‐gradient classical density functional theory. The proposed theoretical model explicitly includes the relevant interaction forces among fluids and solids in macroscopic porous media. Application of the model to a relative‐humidity‐controlled water adsorption experiment is presented to demonstrate the impact of water‐pore wall attractive forces on multiphase water behavior in a hydrophilic silicon nanoporous medium. The model represents well the measured time‐dependent evolution of the water imbibition front inside the nanoporous medium and also explains the diffusion‐like water transport regimes observed at rh < rhcrit and the imbibition‐like flow regimes observed at rh > rhcrit. The study furthermore gives an insight on hysteresis phenomenon in adsorption and desorption isotherms.
Key Points
The square gradient theory‐based model explains diffusion‐to‐imbibition transition at a critical relative humidity in nanoporous media
The model presented has an inherent feature to represent hysteresis in adsorption and desorption isotherms
Hysteresis in the predicted isotherms is explained by the existence of the different energy barriers for adsorption and desorption</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Carbon sequestration</subject><subject>classical density functional theory</subject><subject>Computational fluid dynamics</subject><subject>Condensates</subject><subject>Condensation</subject><subject>Density functional theory</subject><subject>Diffusion</subject><subject>Fluids</subject><subject>Forces</subject><subject>Humidity</subject><subject>Hydrocarbons</subject><subject>Hydrophilicity</subject><subject>Imbibition</subject><subject>Molecular interactions</subject><subject>Multiphase</subject><subject>nanoporous medium</subject><subject>Porous media</subject><subject>Radioactive waste disposal</subject><subject>Radioactive wastes</subject><subject>Relative humidity</subject><subject>Saturation</subject><subject>Transport</subject><subject>Vapor phases</subject><subject>Vapors</subject><subject>Waste disposal</subject><subject>Water</subject><subject>water adsorption</subject><subject>Water transport</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKs7H2DQraP5nUzcSf0rVIW20mXIZDI0pZ2MSQbpzkfwGX0Sp4yCKzf3HA4fl3sPAKcIXiKIxRWGGC2mneMY7oEBEpSmXHCyDwYQUpIiIvghOAphBSGiLOMDoG5tVbXBuvrr4zO6bow3hS1s7JJk7lUdemvrZKGi8cnM-eY3eVa1a5x3bUieTGnVdTJfGudNtFqtk1lsS2vCMTio1DqYkx8dgtf7u_noMZ28PIxHN5NUEcFEShXGQhhYUkYM5JxpzEhJMlzxzPC80gUqNUECMV0SXe40oxktTEFzwk1JhuCs3-tCtDJoG41ealfXRkeJeM6JyDvovIca795aE6JcudbX3V0SM0pzgXLIOuqip7R3IXhTycbbjfJbiaDcNS3_Nt3hpMff7dps_2XlYjqado8xQb4BbieBPw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Cihan, Abdullah</creator><creator>Tokunaga, Tetsu K.</creator><creator>Birkholzer, Jens T.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4640-6693</orcidid><orcidid>https://orcid.org/0000-0002-7989-1912</orcidid><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000000279891912</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid><orcidid>https://orcid.org/0000000246406693</orcidid></search><sort><creationdate>202106</creationdate><title>Diffusion‐to‐Imbibition Transition in Water Sorption in Nanoporous Media: Theoretical Studies</title><author>Cihan, Abdullah ; Tokunaga, Tetsu K. ; Birkholzer, Jens T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3959-4a2299e0d453e0775c253d362f76e78fcb1dc31915cd3cd915c6464beb4837ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Carbon sequestration</topic><topic>classical density functional theory</topic><topic>Computational fluid dynamics</topic><topic>Condensates</topic><topic>Condensation</topic><topic>Density functional theory</topic><topic>Diffusion</topic><topic>Fluids</topic><topic>Forces</topic><topic>Humidity</topic><topic>Hydrocarbons</topic><topic>Hydrophilicity</topic><topic>Imbibition</topic><topic>Molecular interactions</topic><topic>Multiphase</topic><topic>nanoporous medium</topic><topic>Porous media</topic><topic>Radioactive waste disposal</topic><topic>Radioactive wastes</topic><topic>Relative humidity</topic><topic>Saturation</topic><topic>Transport</topic><topic>Vapor phases</topic><topic>Vapors</topic><topic>Waste disposal</topic><topic>Water</topic><topic>water adsorption</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cihan, Abdullah</creatorcontrib><creatorcontrib>Tokunaga, Tetsu K.</creatorcontrib><creatorcontrib>Birkholzer, Jens T.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cihan, Abdullah</au><au>Tokunaga, Tetsu K.</au><au>Birkholzer, Jens T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion‐to‐Imbibition Transition in Water Sorption in Nanoporous Media: Theoretical Studies</atitle><jtitle>Water resources research</jtitle><date>2021-06</date><risdate>2021</risdate><volume>57</volume><issue>6</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The ability to predict multiphase fluid transport in nanoporous rocks such as shales is critical for many geoscience applications, for example unconventional hydrocarbon production, geologic carbon sequestration, and nuclear waste disposal. When the pore sizes approach nanoscales, the impact of the molecular interaction forces between fluids and solids becomes increasingly important. These forces can alter macroscopic fluid phase behavior and control transport. Recent experimental studies have shown that capillary condensation and subsequent imbibition of liquid water can occur in hydrophilic nanoporous media even if the vapor phase is at a critical relative humidity (rhcrit) well below vapor saturation. This study presents a theoretical investigation of the processes controlling adsorption, capillary condensation and imbibition in nanoporous media, using the square‐gradient classical density functional theory. The proposed theoretical model explicitly includes the relevant interaction forces among fluids and solids in macroscopic porous media. Application of the model to a relative‐humidity‐controlled water adsorption experiment is presented to demonstrate the impact of water‐pore wall attractive forces on multiphase water behavior in a hydrophilic silicon nanoporous medium. The model represents well the measured time‐dependent evolution of the water imbibition front inside the nanoporous medium and also explains the diffusion‐like water transport regimes observed at rh < rhcrit and the imbibition‐like flow regimes observed at rh > rhcrit. The study furthermore gives an insight on hysteresis phenomenon in adsorption and desorption isotherms.
Key Points
The square gradient theory‐based model explains diffusion‐to‐imbibition transition at a critical relative humidity in nanoporous media
The model presented has an inherent feature to represent hysteresis in adsorption and desorption isotherms
Hysteresis in the predicted isotherms is explained by the existence of the different energy barriers for adsorption and desorption</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2021WR029720</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4640-6693</orcidid><orcidid>https://orcid.org/0000-0002-7989-1912</orcidid><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000000279891912</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid><orcidid>https://orcid.org/0000000246406693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2021-06, Vol.57 (6), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_osti_scitechconnect_1787398 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library |
subjects | Adsorbed water Adsorption Carbon sequestration classical density functional theory Computational fluid dynamics Condensates Condensation Density functional theory Diffusion Fluids Forces Humidity Hydrocarbons Hydrophilicity Imbibition Molecular interactions Multiphase nanoporous medium Porous media Radioactive waste disposal Radioactive wastes Relative humidity Saturation Transport Vapor phases Vapors Waste disposal Water water adsorption Water transport |
title | Diffusion‐to‐Imbibition Transition in Water Sorption in Nanoporous Media: Theoretical Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%E2%80%90to%E2%80%90Imbibition%20Transition%20in%20Water%20Sorption%20in%20Nanoporous%20Media:%20Theoretical%20Studies&rft.jtitle=Water%20resources%20research&rft.au=Cihan,%20Abdullah&rft.date=2021-06&rft.volume=57&rft.issue=6&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2021WR029720&rft_dat=%3Cproquest_osti_%3E2544891805%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544891805&rft_id=info:pmid/&rfr_iscdi=true |