An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction

[Display omitted] •A heterostructured catalyst based on high–entropy material was prepared.•Cu species in HEO dissolved into CeO2 via an entropy-driven mechanochemical process.•The heterostructure was between high–entropy oxides and CeCuOx.•The heterostructured catalyst showed high-temperature stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-11, Vol.276, p.119155, Article 119155
Hauptverfasser: Chen, Hao, Jie, Kecheng, Jafta, Charl J., Yang, Zhenzhen, Yao, Siyu, Liu, Miaomiao, Zhang, Zihao, Liu, Jixing, Chi, Miaofang, Fu, Jie, Dai, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119155
container_title Applied catalysis. B, Environmental
container_volume 276
creator Chen, Hao
Jie, Kecheng
Jafta, Charl J.
Yang, Zhenzhen
Yao, Siyu
Liu, Miaomiao
Zhang, Zihao
Liu, Jixing
Chi, Miaofang
Fu, Jie
Dai, Sheng
description [Display omitted] •A heterostructured catalyst based on high–entropy material was prepared.•Cu species in HEO dissolved into CeO2 via an entropy-driven mechanochemical process.•The heterostructure was between high–entropy oxides and CeCuOx.•The heterostructured catalyst showed high-temperature stability for CO oxidation. Designing high-performance catalysts that can stabilize catalytic active sites against sintering to deactivation at temperature higher than 900 °C is significant but challenging. Here we report a new strategy to obtain a transition metal oxide catalyst with high temperature stability for CO oxidation. This is achieved through a synergistic interfacial interaction at the interface of a heterostructure between high–entropy oxides (HEO, high temperature stability) and CuCeOx (catalytic site). The catalytic site (CuCeOx) for CO oxidation is realized by dissolving an amount of Cu species in HEO into CeO2 via an entropy–driven mechanochemical process. In situ XRD and HAADF–STEM have confirmed the high temperature stability of the heterostructure CuCeOx–HEO, which can remain its CO oxidation catalytic activity at elevated temperatures. It should be expected that this innovative will offer the potential to the synthesis of catalysts with high temperature stability in industry.
doi_str_mv 10.1016/j.apcatb.2020.119155
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1787224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320305701</els_id><sourcerecordid>2452125743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-7a014cea6f5b3676239500a5bf0d423b0ec441fa906d874b64f1d54a288153cf3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1EJYbCG7CwYJ2pf-MMC6RR1UKlSmzo2rpxbmY8Sp3BdlrC8_RBcRQkdqxsXZ3z-fgeQj5wtuWM11enLZwd5HYrmCgjvuNavyIb3hhZyaaRr8mG7URdSWnkG_I2pRNjTEjRbMjLPtBpyBFShnZAesSMcUw5Ti5PETs6_vId0kKHYU6ZtpCWYaBHfzhWGHIczzN9hOLyMKTPdE8DPtMCKKPDTPP4DLH751-e8YP_DdkXyJMHmuaA8eBT9o76UDg9uIJa7-AW3Tty0Rc4vv97XpKH25sf19-q--9f767395VTRubKAOPKIdS9bmVtaiF3mjHQbc86JWTL0CnFe9ixumuMamvV804rEE3DtXS9vCQfV25ZgLfJ-Yzu6MYQ0GXLTWOEUEX0aRWd4_hzwpTtaZxiKLmsUFpwoY2SRaVWlSvbTBF7e47-EeJsObNLafZk19LsUppdSyu2L6sNyzefPMYlBQaHnY9LiG70_wf8AV5dpeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452125743</pqid></control><display><type>article</type><title>An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Hao ; Jie, Kecheng ; Jafta, Charl J. ; Yang, Zhenzhen ; Yao, Siyu ; Liu, Miaomiao ; Zhang, Zihao ; Liu, Jixing ; Chi, Miaofang ; Fu, Jie ; Dai, Sheng</creator><creatorcontrib>Chen, Hao ; Jie, Kecheng ; Jafta, Charl J. ; Yang, Zhenzhen ; Yao, Siyu ; Liu, Miaomiao ; Zhang, Zihao ; Liu, Jixing ; Chi, Miaofang ; Fu, Jie ; Dai, Sheng ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>[Display omitted] •A heterostructured catalyst based on high–entropy material was prepared.•Cu species in HEO dissolved into CeO2 via an entropy-driven mechanochemical process.•The heterostructure was between high–entropy oxides and CeCuOx.•The heterostructured catalyst showed high-temperature stability for CO oxidation. Designing high-performance catalysts that can stabilize catalytic active sites against sintering to deactivation at temperature higher than 900 °C is significant but challenging. Here we report a new strategy to obtain a transition metal oxide catalyst with high temperature stability for CO oxidation. This is achieved through a synergistic interfacial interaction at the interface of a heterostructure between high–entropy oxides (HEO, high temperature stability) and CuCeOx (catalytic site). The catalytic site (CuCeOx) for CO oxidation is realized by dissolving an amount of Cu species in HEO into CeO2 via an entropy–driven mechanochemical process. In situ XRD and HAADF–STEM have confirmed the high temperature stability of the heterostructure CuCeOx–HEO, which can remain its CO oxidation catalytic activity at elevated temperatures. It should be expected that this innovative will offer the potential to the synthesis of catalysts with high temperature stability in industry.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119155</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon monoxide ; Catalysts ; Catalytic activity ; Cerium oxides ; Chemical synthesis ; CO oxidation ; Copper ; CuCeOx ; Deactivation ; Entropy ; Heterostructures ; High temperature ; High-entropy oxide ; High-temperature stability ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interface stability ; Interfacial synergistic ; Oxidation ; Transition metal oxides</subject><ispartof>Applied catalysis. B, Environmental, 2020-11, Vol.276, p.119155, Article 119155</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Nov 5, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-7a014cea6f5b3676239500a5bf0d423b0ec441fa906d874b64f1d54a288153cf3</citedby><cites>FETCH-LOGICAL-c473t-7a014cea6f5b3676239500a5bf0d423b0ec441fa906d874b64f1d54a288153cf3</cites><orcidid>0000000202334747 ; 0000000307641567 ; 0000000297736799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337320305701$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1787224$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Jie, Kecheng</creatorcontrib><creatorcontrib>Jafta, Charl J.</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Liu, Miaomiao</creatorcontrib><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Liu, Jixing</creatorcontrib><creatorcontrib>Chi, Miaofang</creatorcontrib><creatorcontrib>Fu, Jie</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •A heterostructured catalyst based on high–entropy material was prepared.•Cu species in HEO dissolved into CeO2 via an entropy-driven mechanochemical process.•The heterostructure was between high–entropy oxides and CeCuOx.•The heterostructured catalyst showed high-temperature stability for CO oxidation. Designing high-performance catalysts that can stabilize catalytic active sites against sintering to deactivation at temperature higher than 900 °C is significant but challenging. Here we report a new strategy to obtain a transition metal oxide catalyst with high temperature stability for CO oxidation. This is achieved through a synergistic interfacial interaction at the interface of a heterostructure between high–entropy oxides (HEO, high temperature stability) and CuCeOx (catalytic site). The catalytic site (CuCeOx) for CO oxidation is realized by dissolving an amount of Cu species in HEO into CeO2 via an entropy–driven mechanochemical process. In situ XRD and HAADF–STEM have confirmed the high temperature stability of the heterostructure CuCeOx–HEO, which can remain its CO oxidation catalytic activity at elevated temperatures. It should be expected that this innovative will offer the potential to the synthesis of catalysts with high temperature stability in industry.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cerium oxides</subject><subject>Chemical synthesis</subject><subject>CO oxidation</subject><subject>Copper</subject><subject>CuCeOx</subject><subject>Deactivation</subject><subject>Entropy</subject><subject>Heterostructures</subject><subject>High temperature</subject><subject>High-entropy oxide</subject><subject>High-temperature stability</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interface stability</subject><subject>Interfacial synergistic</subject><subject>Oxidation</subject><subject>Transition metal oxides</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS1EJYbCG7CwYJ2pf-MMC6RR1UKlSmzo2rpxbmY8Sp3BdlrC8_RBcRQkdqxsXZ3z-fgeQj5wtuWM11enLZwd5HYrmCgjvuNavyIb3hhZyaaRr8mG7URdSWnkG_I2pRNjTEjRbMjLPtBpyBFShnZAesSMcUw5Ti5PETs6_vId0kKHYU6ZtpCWYaBHfzhWGHIczzN9hOLyMKTPdE8DPtMCKKPDTPP4DLH751-e8YP_DdkXyJMHmuaA8eBT9o76UDg9uIJa7-AW3Tty0Rc4vv97XpKH25sf19-q--9f767395VTRubKAOPKIdS9bmVtaiF3mjHQbc86JWTL0CnFe9ixumuMamvV804rEE3DtXS9vCQfV25ZgLfJ-Yzu6MYQ0GXLTWOEUEX0aRWd4_hzwpTtaZxiKLmsUFpwoY2SRaVWlSvbTBF7e47-EeJsObNLafZk19LsUppdSyu2L6sNyzefPMYlBQaHnY9LiG70_wf8AV5dpeA</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Chen, Hao</creator><creator>Jie, Kecheng</creator><creator>Jafta, Charl J.</creator><creator>Yang, Zhenzhen</creator><creator>Yao, Siyu</creator><creator>Liu, Miaomiao</creator><creator>Zhang, Zihao</creator><creator>Liu, Jixing</creator><creator>Chi, Miaofang</creator><creator>Fu, Jie</creator><creator>Dai, Sheng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000202334747</orcidid><orcidid>https://orcid.org/0000000307641567</orcidid><orcidid>https://orcid.org/0000000297736799</orcidid></search><sort><creationdate>20201105</creationdate><title>An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction</title><author>Chen, Hao ; Jie, Kecheng ; Jafta, Charl J. ; Yang, Zhenzhen ; Yao, Siyu ; Liu, Miaomiao ; Zhang, Zihao ; Liu, Jixing ; Chi, Miaofang ; Fu, Jie ; Dai, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-7a014cea6f5b3676239500a5bf0d423b0ec441fa906d874b64f1d54a288153cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cerium oxides</topic><topic>Chemical synthesis</topic><topic>CO oxidation</topic><topic>Copper</topic><topic>CuCeOx</topic><topic>Deactivation</topic><topic>Entropy</topic><topic>Heterostructures</topic><topic>High temperature</topic><topic>High-entropy oxide</topic><topic>High-temperature stability</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interface stability</topic><topic>Interfacial synergistic</topic><topic>Oxidation</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Jie, Kecheng</creatorcontrib><creatorcontrib>Jafta, Charl J.</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Liu, Miaomiao</creatorcontrib><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Liu, Jixing</creatorcontrib><creatorcontrib>Chi, Miaofang</creatorcontrib><creatorcontrib>Fu, Jie</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>Jie, Kecheng</au><au>Jafta, Charl J.</au><au>Yang, Zhenzhen</au><au>Yao, Siyu</au><au>Liu, Miaomiao</au><au>Zhang, Zihao</au><au>Liu, Jixing</au><au>Chi, Miaofang</au><au>Fu, Jie</au><au>Dai, Sheng</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-11-05</date><risdate>2020</risdate><volume>276</volume><spage>119155</spage><pages>119155-</pages><artnum>119155</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •A heterostructured catalyst based on high–entropy material was prepared.•Cu species in HEO dissolved into CeO2 via an entropy-driven mechanochemical process.•The heterostructure was between high–entropy oxides and CeCuOx.•The heterostructured catalyst showed high-temperature stability for CO oxidation. Designing high-performance catalysts that can stabilize catalytic active sites against sintering to deactivation at temperature higher than 900 °C is significant but challenging. Here we report a new strategy to obtain a transition metal oxide catalyst with high temperature stability for CO oxidation. This is achieved through a synergistic interfacial interaction at the interface of a heterostructure between high–entropy oxides (HEO, high temperature stability) and CuCeOx (catalytic site). The catalytic site (CuCeOx) for CO oxidation is realized by dissolving an amount of Cu species in HEO into CeO2 via an entropy–driven mechanochemical process. In situ XRD and HAADF–STEM have confirmed the high temperature stability of the heterostructure CuCeOx–HEO, which can remain its CO oxidation catalytic activity at elevated temperatures. It should be expected that this innovative will offer the potential to the synthesis of catalysts with high temperature stability in industry.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119155</doi><orcidid>https://orcid.org/0000000202334747</orcidid><orcidid>https://orcid.org/0000000307641567</orcidid><orcidid>https://orcid.org/0000000297736799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-11, Vol.276, p.119155, Article 119155
issn 0926-3373
1873-3883
language eng
recordid cdi_osti_scitechconnect_1787224
source Elsevier ScienceDirect Journals
subjects Carbon monoxide
Catalysts
Catalytic activity
Cerium oxides
Chemical synthesis
CO oxidation
Copper
CuCeOx
Deactivation
Entropy
Heterostructures
High temperature
High-entropy oxide
High-temperature stability
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Interface stability
Interfacial synergistic
Oxidation
Transition metal oxides
title An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultrastable%20heterostructured%20oxide%20catalyst%20based%20on%20high-entropy%20materials:%20A%20new%20strategy%20toward%20catalyst%20stabilization%20via%20synergistic%20interfacial%20interaction&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Chen,%20Hao&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-11-05&rft.volume=276&rft.spage=119155&rft.pages=119155-&rft.artnum=119155&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119155&rft_dat=%3Cproquest_osti_%3E2452125743%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452125743&rft_id=info:pmid/&rft_els_id=S0926337320305701&rfr_iscdi=true