Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons
Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently stra...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-04, Vol.33 (16), p.e2007413-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2007413 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Nickel, Rachel Chi, C.‐C. Ranjan, Ashok Ouyang, Chuenhou Freeland, John W. van Lierop, Johan |
description | Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism.
Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date. |
doi_str_mv | 10.1002/adma.202007413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1785723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501255098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</originalsourceid><addsrcrecordid>eNqF0c9O3DAQBnALFcGW9sqxWpULlyzjv4mPKwptJaBSuz1bzmRCQ7MOtbOgvfUR-ow8CV4tUKmXSpZ8-fmTZz7GDjnMOIA48c3SzwQIgFJxucMmXAteKLD6FZuAlbqwRlX77HVKNwBgDZg9ti9lycFUZsLOv9IdxUQPv_-chesuEMUuXE-_jdF3YZrPlQ8DxnUafd93I6VpvZ4uosefG7aI3ZLiENIbttv6PtHbp_uAfT8_W5x-Ki6-fPx8Or8oUAHIQlQWlajRyNI2olYg0RPXZctBgmra1pRCo2ywtWi4ByUqZUxVI5LnUDXygL3f5g5p7FzC_CP8gUMIhKPjZaVLITM63qLbOPxaURrdsktIfe8DDavkhAYutAZbZXr0D70ZVjHkEbLi2YEwkNVsqzAOKUVq3W0e3Me14-A2NbhNDe6lhvzg3VPsql5S88Kf956B3YL7rqf1f-Lc_MPl_G_4I_fvkxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515010260</pqid></control><display><type>article</type><title>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</title><source>Access via Wiley Online Library</source><creator>Nickel, Rachel ; Chi, C.‐C. ; Ranjan, Ashok ; Ouyang, Chuenhou ; Freeland, John W. ; van Lierop, Johan</creator><creatorcontrib>Nickel, Rachel ; Chi, C.‐C. ; Ranjan, Ashok ; Ouyang, Chuenhou ; Freeland, John W. ; van Lierop, Johan ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism.
Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202007413</identifier><identifier>PMID: 33710686</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Elementary excitations ; Iron oxides ; MATERIALS SCIENCE ; Metal-insulator transition ; Nanocrystals ; Nanomaterials ; Nanoparticles ; Nanorods ; strain ; trimerons ; Verwey transition</subject><ispartof>Advanced materials (Weinheim), 2021-04, Vol.33 (16), p.e2007413-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</citedby><cites>FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</cites><orcidid>0000-0002-8179-6295 ; 0000000281796295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202007413$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202007413$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33710686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785723$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nickel, Rachel</creatorcontrib><creatorcontrib>Chi, C.‐C.</creatorcontrib><creatorcontrib>Ranjan, Ashok</creatorcontrib><creatorcontrib>Ouyang, Chuenhou</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>van Lierop, Johan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism.
Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date.</description><subject>Elementary excitations</subject><subject>Iron oxides</subject><subject>MATERIALS SCIENCE</subject><subject>Metal-insulator transition</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>strain</subject><subject>trimerons</subject><subject>Verwey transition</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0c9O3DAQBnALFcGW9sqxWpULlyzjv4mPKwptJaBSuz1bzmRCQ7MOtbOgvfUR-ow8CV4tUKmXSpZ8-fmTZz7GDjnMOIA48c3SzwQIgFJxucMmXAteKLD6FZuAlbqwRlX77HVKNwBgDZg9ti9lycFUZsLOv9IdxUQPv_-chesuEMUuXE-_jdF3YZrPlQ8DxnUafd93I6VpvZ4uosefG7aI3ZLiENIbttv6PtHbp_uAfT8_W5x-Ki6-fPx8Or8oUAHIQlQWlajRyNI2olYg0RPXZctBgmra1pRCo2ywtWi4ByUqZUxVI5LnUDXygL3f5g5p7FzC_CP8gUMIhKPjZaVLITM63qLbOPxaURrdsktIfe8DDavkhAYutAZbZXr0D70ZVjHkEbLi2YEwkNVsqzAOKUVq3W0e3Me14-A2NbhNDe6lhvzg3VPsql5S88Kf956B3YL7rqf1f-Lc_MPl_G_4I_fvkxs</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Nickel, Rachel</creator><creator>Chi, C.‐C.</creator><creator>Ranjan, Ashok</creator><creator>Ouyang, Chuenhou</creator><creator>Freeland, John W.</creator><creator>van Lierop, Johan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8179-6295</orcidid><orcidid>https://orcid.org/0000000281796295</orcidid></search><sort><creationdate>20210401</creationdate><title>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</title><author>Nickel, Rachel ; Chi, C.‐C. ; Ranjan, Ashok ; Ouyang, Chuenhou ; Freeland, John W. ; van Lierop, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Elementary excitations</topic><topic>Iron oxides</topic><topic>MATERIALS SCIENCE</topic><topic>Metal-insulator transition</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>strain</topic><topic>trimerons</topic><topic>Verwey transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nickel, Rachel</creatorcontrib><creatorcontrib>Chi, C.‐C.</creatorcontrib><creatorcontrib>Ranjan, Ashok</creatorcontrib><creatorcontrib>Ouyang, Chuenhou</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>van Lierop, Johan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nickel, Rachel</au><au>Chi, C.‐C.</au><au>Ranjan, Ashok</au><au>Ouyang, Chuenhou</au><au>Freeland, John W.</au><au>van Lierop, Johan</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>33</volume><issue>16</issue><spage>e2007413</spage><epage>n/a</epage><pages>e2007413-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism.
Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33710686</pmid><doi>10.1002/adma.202007413</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8179-6295</orcidid><orcidid>https://orcid.org/0000000281796295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-04, Vol.33 (16), p.e2007413-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1785723 |
source | Access via Wiley Online Library |
subjects | Elementary excitations Iron oxides MATERIALS SCIENCE Metal-insulator transition Nanocrystals Nanomaterials Nanoparticles Nanorods strain trimerons Verwey transition |
title | Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%E2%80%90Engineering%20Strain%20in%20Nanocrystallites%20by%20Tracking%20Trimerons&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Nickel,%20Rachel&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-04-01&rft.volume=33&rft.issue=16&rft.spage=e2007413&rft.epage=n/a&rft.pages=e2007413-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202007413&rft_dat=%3Cproquest_osti_%3E2501255098%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515010260&rft_id=info:pmid/33710686&rfr_iscdi=true |