Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons

Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-04, Vol.33 (16), p.e2007413-n/a
Hauptverfasser: Nickel, Rachel, Chi, C.‐C., Ranjan, Ashok, Ouyang, Chuenhou, Freeland, John W., van Lierop, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2007413
container_title Advanced materials (Weinheim)
container_volume 33
creator Nickel, Rachel
Chi, C.‐C.
Ranjan, Ashok
Ouyang, Chuenhou
Freeland, John W.
van Lierop, Johan
description Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism. Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date.
doi_str_mv 10.1002/adma.202007413
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1785723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501255098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</originalsourceid><addsrcrecordid>eNqF0c9O3DAQBnALFcGW9sqxWpULlyzjv4mPKwptJaBSuz1bzmRCQ7MOtbOgvfUR-ow8CV4tUKmXSpZ8-fmTZz7GDjnMOIA48c3SzwQIgFJxucMmXAteKLD6FZuAlbqwRlX77HVKNwBgDZg9ti9lycFUZsLOv9IdxUQPv_-chesuEMUuXE-_jdF3YZrPlQ8DxnUafd93I6VpvZ4uosefG7aI3ZLiENIbttv6PtHbp_uAfT8_W5x-Ki6-fPx8Or8oUAHIQlQWlajRyNI2olYg0RPXZctBgmra1pRCo2ywtWi4ByUqZUxVI5LnUDXygL3f5g5p7FzC_CP8gUMIhKPjZaVLITM63qLbOPxaURrdsktIfe8DDavkhAYutAZbZXr0D70ZVjHkEbLi2YEwkNVsqzAOKUVq3W0e3Me14-A2NbhNDe6lhvzg3VPsql5S88Kf956B3YL7rqf1f-Lc_MPl_G_4I_fvkxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515010260</pqid></control><display><type>article</type><title>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</title><source>Access via Wiley Online Library</source><creator>Nickel, Rachel ; Chi, C.‐C. ; Ranjan, Ashok ; Ouyang, Chuenhou ; Freeland, John W. ; van Lierop, Johan</creator><creatorcontrib>Nickel, Rachel ; Chi, C.‐C. ; Ranjan, Ashok ; Ouyang, Chuenhou ; Freeland, John W. ; van Lierop, Johan ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism. Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202007413</identifier><identifier>PMID: 33710686</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Elementary excitations ; Iron oxides ; MATERIALS SCIENCE ; Metal-insulator transition ; Nanocrystals ; Nanomaterials ; Nanoparticles ; Nanorods ; strain ; trimerons ; Verwey transition</subject><ispartof>Advanced materials (Weinheim), 2021-04, Vol.33 (16), p.e2007413-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</citedby><cites>FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</cites><orcidid>0000-0002-8179-6295 ; 0000000281796295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202007413$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202007413$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33710686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785723$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nickel, Rachel</creatorcontrib><creatorcontrib>Chi, C.‐C.</creatorcontrib><creatorcontrib>Ranjan, Ashok</creatorcontrib><creatorcontrib>Ouyang, Chuenhou</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>van Lierop, Johan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism. Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date.</description><subject>Elementary excitations</subject><subject>Iron oxides</subject><subject>MATERIALS SCIENCE</subject><subject>Metal-insulator transition</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>strain</subject><subject>trimerons</subject><subject>Verwey transition</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0c9O3DAQBnALFcGW9sqxWpULlyzjv4mPKwptJaBSuz1bzmRCQ7MOtbOgvfUR-ow8CV4tUKmXSpZ8-fmTZz7GDjnMOIA48c3SzwQIgFJxucMmXAteKLD6FZuAlbqwRlX77HVKNwBgDZg9ti9lycFUZsLOv9IdxUQPv_-chesuEMUuXE-_jdF3YZrPlQ8DxnUafd93I6VpvZ4uosefG7aI3ZLiENIbttv6PtHbp_uAfT8_W5x-Ki6-fPx8Or8oUAHIQlQWlajRyNI2olYg0RPXZctBgmra1pRCo2ywtWi4ByUqZUxVI5LnUDXygL3f5g5p7FzC_CP8gUMIhKPjZaVLITM63qLbOPxaURrdsktIfe8DDavkhAYutAZbZXr0D70ZVjHkEbLi2YEwkNVsqzAOKUVq3W0e3Me14-A2NbhNDe6lhvzg3VPsql5S88Kf956B3YL7rqf1f-Lc_MPl_G_4I_fvkxs</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Nickel, Rachel</creator><creator>Chi, C.‐C.</creator><creator>Ranjan, Ashok</creator><creator>Ouyang, Chuenhou</creator><creator>Freeland, John W.</creator><creator>van Lierop, Johan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8179-6295</orcidid><orcidid>https://orcid.org/0000000281796295</orcidid></search><sort><creationdate>20210401</creationdate><title>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</title><author>Nickel, Rachel ; Chi, C.‐C. ; Ranjan, Ashok ; Ouyang, Chuenhou ; Freeland, John W. ; van Lierop, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4003-289c42bc6379d2b403cae157f10304dff6725c3dcf9c61a04284668bccea108d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Elementary excitations</topic><topic>Iron oxides</topic><topic>MATERIALS SCIENCE</topic><topic>Metal-insulator transition</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>strain</topic><topic>trimerons</topic><topic>Verwey transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nickel, Rachel</creatorcontrib><creatorcontrib>Chi, C.‐C.</creatorcontrib><creatorcontrib>Ranjan, Ashok</creatorcontrib><creatorcontrib>Ouyang, Chuenhou</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>van Lierop, Johan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nickel, Rachel</au><au>Chi, C.‐C.</au><au>Ranjan, Ashok</au><au>Ouyang, Chuenhou</au><au>Freeland, John W.</au><au>van Lierop, Johan</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>33</volume><issue>16</issue><spage>e2007413</spage><epage>n/a</epage><pages>e2007413-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Although strain underpins the behavior of many transition‐oxide‐based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal–insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K—the highest value reported thus far. A metal–insulator transition, like TV in Fe3O4, can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism. Tracking the orbital molecule formation through the Verwey transition temperature (TV) in nanorods provides a unique window into nanocrystallite strain. Particles with uniaxial tensile strain show the highest TV = 150 K reported to date.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33710686</pmid><doi>10.1002/adma.202007413</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8179-6295</orcidid><orcidid>https://orcid.org/0000000281796295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-04, Vol.33 (16), p.e2007413-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1785723
source Access via Wiley Online Library
subjects Elementary excitations
Iron oxides
MATERIALS SCIENCE
Metal-insulator transition
Nanocrystals
Nanomaterials
Nanoparticles
Nanorods
strain
trimerons
Verwey transition
title Reverse‐Engineering Strain in Nanocrystallites by Tracking Trimerons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%E2%80%90Engineering%20Strain%20in%20Nanocrystallites%20by%20Tracking%20Trimerons&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Nickel,%20Rachel&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-04-01&rft.volume=33&rft.issue=16&rft.spage=e2007413&rft.epage=n/a&rft.pages=e2007413-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202007413&rft_dat=%3Cproquest_osti_%3E2501255098%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515010260&rft_id=info:pmid/33710686&rfr_iscdi=true