Local negative permittivity and topological phase transition in polar skyrmions
Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such...
Gespeichert in:
Veröffentlicht in: | Nature materials 2021-02, Vol.20 (2), p.194-201 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 2 |
container_start_page | 194 |
container_title | Nature materials |
container_volume | 20 |
creator | Das, S. Hong, Z. Stoica, V. A. Gonçalves, M. A. P. Shao, Y. T. Parsonnet, E. Marksz, E. J. Saremi, S. McCarter, M. R. Reynoso, A. Long, C. J. Hagerstrom, A. M. Meyers, D. Ravi, V. Prasad, B. Zhou, H. Zhang, Z. Wen, H. Gómez-Ortiz, F. García-Fernández, P. Bokor, J. Íñiguez, J. Freeland, J. W. Orloff, N. D. Junquera, J. Chen, L. Q. Salahuddin, S. Muller, D. A. Martin, L. W. Ramesh, R. |
description | Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such features with electric fields. Using macroscopic dielectric measurements, coupled with direct scanning convergent beam electron diffraction imaging on the atomic scale, theoretical phase-field simulations and second-principles calculations, we demonstrate that polar skyrmions in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices are distinguished by a sheath of negative permittivity at the periphery of each skyrmion. This enhances the effective dielectric permittivity compared with the individual SrTiO
3
and PbTiO
3
layers. Moreover, the response of these topologically protected structures to electric field and temperature shows a reversible phase transition from the skyrmion state to a trivial uniform ferroelectric state, accompanied by large tunability of the dielectric permittivity. Pulsed switching measurements show a time-dependent evolution and recovery of the skyrmion state (and macroscopic dielectric response). The interrelationship between topological and dielectric properties presents an opportunity to simultaneously manipulate both by a single, and easily controlled, stimulus, the applied electric field.
Polar skyrmions are topologically protected structures that can exist in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices. Here, it is shown that they have negative permittivity at the surface, and that they can undergo a reversible phase transition with large dielectric tunability under an electric field. |
doi_str_mv | 10.1038/s41563-020-00818-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1785717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481412048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-df992dc9a80334c24df90b91671b6c2099fd00fde90abd27ef9890989f6d8ccb3</originalsourceid><addsrcrecordid>eNp9kUFv3CAQhVHVqEnT_oEeKqu59OJkBmMMxyhq2kgr5ZKcEcZ4Q-oFB9hK_vcl8baVcugBMWK-99DMI-QTwjlCIy4Sw5Y3NVCoAQSKenlDTpB1vGacw9tDjUjpMXmf0iMAxbbl78hx0wDjouUn5HYTjJ4qb7c6u1-2mm3cuVxKl5dK-6HKYQ5T2Lpnan7QyVY5ap9cdsFXzlelq2OVfi5FF3z6QI5GPSX78XCfkvvrb3dXP-rN7febq8tNbVqkuR5GKelgpBbQNMxQVh6gl8g77LmhIOU4AIyDlaD7gXZ2lEJCOSMfhDF9c0q-rL4hZaeScdmaBxO8tyYr7ETbYVegrys0x_C0tymrnUvGTpP2NuyToqwFXvaAvKBnr9DHsI--jFAogQwpMFEoulImhpSiHdUc3U7HRSGo50zUmokqmaiXTNRSRJ8P1vt-Z4e_kj8hFKBZgVRafmvjv7__Y_sbVIWX0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481412048</pqid></control><display><type>article</type><title>Local negative permittivity and topological phase transition in polar skyrmions</title><source>Springer Journals</source><source>Nature</source><creator>Das, S. ; Hong, Z. ; Stoica, V. A. ; Gonçalves, M. A. P. ; Shao, Y. T. ; Parsonnet, E. ; Marksz, E. J. ; Saremi, S. ; McCarter, M. R. ; Reynoso, A. ; Long, C. J. ; Hagerstrom, A. M. ; Meyers, D. ; Ravi, V. ; Prasad, B. ; Zhou, H. ; Zhang, Z. ; Wen, H. ; Gómez-Ortiz, F. ; García-Fernández, P. ; Bokor, J. ; Íñiguez, J. ; Freeland, J. W. ; Orloff, N. D. ; Junquera, J. ; Chen, L. Q. ; Salahuddin, S. ; Muller, D. A. ; Martin, L. W. ; Ramesh, R.</creator><creatorcontrib>Das, S. ; Hong, Z. ; Stoica, V. A. ; Gonçalves, M. A. P. ; Shao, Y. T. ; Parsonnet, E. ; Marksz, E. J. ; Saremi, S. ; McCarter, M. R. ; Reynoso, A. ; Long, C. J. ; Hagerstrom, A. M. ; Meyers, D. ; Ravi, V. ; Prasad, B. ; Zhou, H. ; Zhang, Z. ; Wen, H. ; Gómez-Ortiz, F. ; García-Fernández, P. ; Bokor, J. ; Íñiguez, J. ; Freeland, J. W. ; Orloff, N. D. ; Junquera, J. ; Chen, L. Q. ; Salahuddin, S. ; Muller, D. A. ; Martin, L. W. ; Ramesh, R. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such features with electric fields. Using macroscopic dielectric measurements, coupled with direct scanning convergent beam electron diffraction imaging on the atomic scale, theoretical phase-field simulations and second-principles calculations, we demonstrate that polar skyrmions in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices are distinguished by a sheath of negative permittivity at the periphery of each skyrmion. This enhances the effective dielectric permittivity compared with the individual SrTiO
3
and PbTiO
3
layers. Moreover, the response of these topologically protected structures to electric field and temperature shows a reversible phase transition from the skyrmion state to a trivial uniform ferroelectric state, accompanied by large tunability of the dielectric permittivity. Pulsed switching measurements show a time-dependent evolution and recovery of the skyrmion state (and macroscopic dielectric response). The interrelationship between topological and dielectric properties presents an opportunity to simultaneously manipulate both by a single, and easily controlled, stimulus, the applied electric field.
Polar skyrmions are topologically protected structures that can exist in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices. Here, it is shown that they have negative permittivity at the surface, and that they can undergo a reversible phase transition with large dielectric tunability under an electric field.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-00818-y</identifier><identifier>PMID: 33046856</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/996 ; 639/766/119/996 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Dielectric properties ; Electric fields ; Electrical properties ; Electron diffraction ; Elementary excitations ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics ; Hypothetical particles ; Lead titanates ; MATERIALS SCIENCE ; multiferroics ; Nanotechnology ; Optical and Electronic Materials ; Particle theory ; Permittivity ; Phase transitions ; Sheaths ; Solitary waves ; Strontium titanates ; Superlattices ; Topology</subject><ispartof>Nature materials, 2021-02, Vol.20 (2), p.194-201</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. corrected publication 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-df992dc9a80334c24df90b91671b6c2099fd00fde90abd27ef9890989f6d8ccb3</citedby><cites>FETCH-LOGICAL-c512t-df992dc9a80334c24df90b91671b6c2099fd00fde90abd27ef9890989f6d8ccb3</cites><orcidid>0000-0002-7203-8476 ; 0000-0001-6435-3604 ; 0000-0002-2734-7819 ; 0000-0002-1195-1341 ; 0000-0002-7618-6134 ; 0000-0003-4164-5131 ; 0000-0003-0723-6887 ; 0000-0001-9642-8674 ; 0000-0002-5427-175X ; 0000-0003-3359-3781 ; 0000-0003-4129-0473 ; 0000-0003-0524-1332 ; 0000-0001-9823-0207 ; 0000-0002-4541-0156 ; 0000-0002-1625-8036 ; 0000-0002-9957-8982 ; 0000-0003-4814-5308 ; 0000-0003-1889-2513 ; 0000000196428674 ; 0000000299578982 ; 0000000305241332 ; 0000000307236887 ; 0000000227347819 ; 0000000318892513 ; 0000000341645131 ; 0000000348145308 ; 0000000198230207 ; 0000000272038476 ; 000000025427175X ; 0000000211951341 ; 0000000164353604 ; 0000000333593781 ; 0000000276186134 ; 0000000341290473 ; 0000000216258036 ; 0000000245410156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-00818-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-00818-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33046856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785717$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Hong, Z.</creatorcontrib><creatorcontrib>Stoica, V. A.</creatorcontrib><creatorcontrib>Gonçalves, M. A. P.</creatorcontrib><creatorcontrib>Shao, Y. T.</creatorcontrib><creatorcontrib>Parsonnet, E.</creatorcontrib><creatorcontrib>Marksz, E. J.</creatorcontrib><creatorcontrib>Saremi, S.</creatorcontrib><creatorcontrib>McCarter, M. R.</creatorcontrib><creatorcontrib>Reynoso, A.</creatorcontrib><creatorcontrib>Long, C. J.</creatorcontrib><creatorcontrib>Hagerstrom, A. M.</creatorcontrib><creatorcontrib>Meyers, D.</creatorcontrib><creatorcontrib>Ravi, V.</creatorcontrib><creatorcontrib>Prasad, B.</creatorcontrib><creatorcontrib>Zhou, H.</creatorcontrib><creatorcontrib>Zhang, Z.</creatorcontrib><creatorcontrib>Wen, H.</creatorcontrib><creatorcontrib>Gómez-Ortiz, F.</creatorcontrib><creatorcontrib>García-Fernández, P.</creatorcontrib><creatorcontrib>Bokor, J.</creatorcontrib><creatorcontrib>Íñiguez, J.</creatorcontrib><creatorcontrib>Freeland, J. W.</creatorcontrib><creatorcontrib>Orloff, N. D.</creatorcontrib><creatorcontrib>Junquera, J.</creatorcontrib><creatorcontrib>Chen, L. Q.</creatorcontrib><creatorcontrib>Salahuddin, S.</creatorcontrib><creatorcontrib>Muller, D. A.</creatorcontrib><creatorcontrib>Martin, L. W.</creatorcontrib><creatorcontrib>Ramesh, R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Local negative permittivity and topological phase transition in polar skyrmions</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such features with electric fields. Using macroscopic dielectric measurements, coupled with direct scanning convergent beam electron diffraction imaging on the atomic scale, theoretical phase-field simulations and second-principles calculations, we demonstrate that polar skyrmions in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices are distinguished by a sheath of negative permittivity at the periphery of each skyrmion. This enhances the effective dielectric permittivity compared with the individual SrTiO
3
and PbTiO
3
layers. Moreover, the response of these topologically protected structures to electric field and temperature shows a reversible phase transition from the skyrmion state to a trivial uniform ferroelectric state, accompanied by large tunability of the dielectric permittivity. Pulsed switching measurements show a time-dependent evolution and recovery of the skyrmion state (and macroscopic dielectric response). The interrelationship between topological and dielectric properties presents an opportunity to simultaneously manipulate both by a single, and easily controlled, stimulus, the applied electric field.
Polar skyrmions are topologically protected structures that can exist in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices. Here, it is shown that they have negative permittivity at the surface, and that they can undergo a reversible phase transition with large dielectric tunability under an electric field.</description><subject>639/301/119/996</subject><subject>639/766/119/996</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Dielectric properties</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Electron diffraction</subject><subject>Elementary excitations</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Hypothetical particles</subject><subject>Lead titanates</subject><subject>MATERIALS SCIENCE</subject><subject>multiferroics</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Particle theory</subject><subject>Permittivity</subject><subject>Phase transitions</subject><subject>Sheaths</subject><subject>Solitary waves</subject><subject>Strontium titanates</subject><subject>Superlattices</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUFv3CAQhVHVqEnT_oEeKqu59OJkBmMMxyhq2kgr5ZKcEcZ4Q-oFB9hK_vcl8baVcugBMWK-99DMI-QTwjlCIy4Sw5Y3NVCoAQSKenlDTpB1vGacw9tDjUjpMXmf0iMAxbbl78hx0wDjouUn5HYTjJ4qb7c6u1-2mm3cuVxKl5dK-6HKYQ5T2Lpnan7QyVY5ap9cdsFXzlelq2OVfi5FF3z6QI5GPSX78XCfkvvrb3dXP-rN7febq8tNbVqkuR5GKelgpBbQNMxQVh6gl8g77LmhIOU4AIyDlaD7gXZ2lEJCOSMfhDF9c0q-rL4hZaeScdmaBxO8tyYr7ETbYVegrys0x_C0tymrnUvGTpP2NuyToqwFXvaAvKBnr9DHsI--jFAogQwpMFEoulImhpSiHdUc3U7HRSGo50zUmokqmaiXTNRSRJ8P1vt-Z4e_kj8hFKBZgVRafmvjv7__Y_sbVIWX0Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Das, S.</creator><creator>Hong, Z.</creator><creator>Stoica, V. A.</creator><creator>Gonçalves, M. A. P.</creator><creator>Shao, Y. T.</creator><creator>Parsonnet, E.</creator><creator>Marksz, E. J.</creator><creator>Saremi, S.</creator><creator>McCarter, M. R.</creator><creator>Reynoso, A.</creator><creator>Long, C. J.</creator><creator>Hagerstrom, A. M.</creator><creator>Meyers, D.</creator><creator>Ravi, V.</creator><creator>Prasad, B.</creator><creator>Zhou, H.</creator><creator>Zhang, Z.</creator><creator>Wen, H.</creator><creator>Gómez-Ortiz, F.</creator><creator>García-Fernández, P.</creator><creator>Bokor, J.</creator><creator>Íñiguez, J.</creator><creator>Freeland, J. W.</creator><creator>Orloff, N. D.</creator><creator>Junquera, J.</creator><creator>Chen, L. Q.</creator><creator>Salahuddin, S.</creator><creator>Muller, D. A.</creator><creator>Martin, L. W.</creator><creator>Ramesh, R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7203-8476</orcidid><orcidid>https://orcid.org/0000-0001-6435-3604</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0002-1195-1341</orcidid><orcidid>https://orcid.org/0000-0002-7618-6134</orcidid><orcidid>https://orcid.org/0000-0003-4164-5131</orcidid><orcidid>https://orcid.org/0000-0003-0723-6887</orcidid><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000-0002-5427-175X</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0000-0003-0524-1332</orcidid><orcidid>https://orcid.org/0000-0001-9823-0207</orcidid><orcidid>https://orcid.org/0000-0002-4541-0156</orcidid><orcidid>https://orcid.org/0000-0002-1625-8036</orcidid><orcidid>https://orcid.org/0000-0002-9957-8982</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><orcidid>https://orcid.org/0000000299578982</orcidid><orcidid>https://orcid.org/0000000305241332</orcidid><orcidid>https://orcid.org/0000000307236887</orcidid><orcidid>https://orcid.org/0000000227347819</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid><orcidid>https://orcid.org/0000000341645131</orcidid><orcidid>https://orcid.org/0000000348145308</orcidid><orcidid>https://orcid.org/0000000198230207</orcidid><orcidid>https://orcid.org/0000000272038476</orcidid><orcidid>https://orcid.org/000000025427175X</orcidid><orcidid>https://orcid.org/0000000211951341</orcidid><orcidid>https://orcid.org/0000000164353604</orcidid><orcidid>https://orcid.org/0000000333593781</orcidid><orcidid>https://orcid.org/0000000276186134</orcidid><orcidid>https://orcid.org/0000000341290473</orcidid><orcidid>https://orcid.org/0000000216258036</orcidid><orcidid>https://orcid.org/0000000245410156</orcidid></search><sort><creationdate>20210201</creationdate><title>Local negative permittivity and topological phase transition in polar skyrmions</title><author>Das, S. ; Hong, Z. ; Stoica, V. A. ; Gonçalves, M. A. P. ; Shao, Y. T. ; Parsonnet, E. ; Marksz, E. J. ; Saremi, S. ; McCarter, M. R. ; Reynoso, A. ; Long, C. J. ; Hagerstrom, A. M. ; Meyers, D. ; Ravi, V. ; Prasad, B. ; Zhou, H. ; Zhang, Z. ; Wen, H. ; Gómez-Ortiz, F. ; García-Fernández, P. ; Bokor, J. ; Íñiguez, J. ; Freeland, J. W. ; Orloff, N. D. ; Junquera, J. ; Chen, L. Q. ; Salahuddin, S. ; Muller, D. A. ; Martin, L. W. ; Ramesh, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-df992dc9a80334c24df90b91671b6c2099fd00fde90abd27ef9890989f6d8ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/119/996</topic><topic>639/766/119/996</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Dielectric properties</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Electron diffraction</topic><topic>Elementary excitations</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Hypothetical particles</topic><topic>Lead titanates</topic><topic>MATERIALS SCIENCE</topic><topic>multiferroics</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Particle theory</topic><topic>Permittivity</topic><topic>Phase transitions</topic><topic>Sheaths</topic><topic>Solitary waves</topic><topic>Strontium titanates</topic><topic>Superlattices</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Hong, Z.</creatorcontrib><creatorcontrib>Stoica, V. A.</creatorcontrib><creatorcontrib>Gonçalves, M. A. P.</creatorcontrib><creatorcontrib>Shao, Y. T.</creatorcontrib><creatorcontrib>Parsonnet, E.</creatorcontrib><creatorcontrib>Marksz, E. J.</creatorcontrib><creatorcontrib>Saremi, S.</creatorcontrib><creatorcontrib>McCarter, M. R.</creatorcontrib><creatorcontrib>Reynoso, A.</creatorcontrib><creatorcontrib>Long, C. J.</creatorcontrib><creatorcontrib>Hagerstrom, A. M.</creatorcontrib><creatorcontrib>Meyers, D.</creatorcontrib><creatorcontrib>Ravi, V.</creatorcontrib><creatorcontrib>Prasad, B.</creatorcontrib><creatorcontrib>Zhou, H.</creatorcontrib><creatorcontrib>Zhang, Z.</creatorcontrib><creatorcontrib>Wen, H.</creatorcontrib><creatorcontrib>Gómez-Ortiz, F.</creatorcontrib><creatorcontrib>García-Fernández, P.</creatorcontrib><creatorcontrib>Bokor, J.</creatorcontrib><creatorcontrib>Íñiguez, J.</creatorcontrib><creatorcontrib>Freeland, J. W.</creatorcontrib><creatorcontrib>Orloff, N. D.</creatorcontrib><creatorcontrib>Junquera, J.</creatorcontrib><creatorcontrib>Chen, L. Q.</creatorcontrib><creatorcontrib>Salahuddin, S.</creatorcontrib><creatorcontrib>Muller, D. A.</creatorcontrib><creatorcontrib>Martin, L. W.</creatorcontrib><creatorcontrib>Ramesh, R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, S.</au><au>Hong, Z.</au><au>Stoica, V. A.</au><au>Gonçalves, M. A. P.</au><au>Shao, Y. T.</au><au>Parsonnet, E.</au><au>Marksz, E. J.</au><au>Saremi, S.</au><au>McCarter, M. R.</au><au>Reynoso, A.</au><au>Long, C. J.</au><au>Hagerstrom, A. M.</au><au>Meyers, D.</au><au>Ravi, V.</au><au>Prasad, B.</au><au>Zhou, H.</au><au>Zhang, Z.</au><au>Wen, H.</au><au>Gómez-Ortiz, F.</au><au>García-Fernández, P.</au><au>Bokor, J.</au><au>Íñiguez, J.</au><au>Freeland, J. W.</au><au>Orloff, N. D.</au><au>Junquera, J.</au><au>Chen, L. Q.</au><au>Salahuddin, S.</au><au>Muller, D. A.</au><au>Martin, L. W.</au><au>Ramesh, R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local negative permittivity and topological phase transition in polar skyrmions</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>20</volume><issue>2</issue><spage>194</spage><epage>201</epage><pages>194-201</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such features with electric fields. Using macroscopic dielectric measurements, coupled with direct scanning convergent beam electron diffraction imaging on the atomic scale, theoretical phase-field simulations and second-principles calculations, we demonstrate that polar skyrmions in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices are distinguished by a sheath of negative permittivity at the periphery of each skyrmion. This enhances the effective dielectric permittivity compared with the individual SrTiO
3
and PbTiO
3
layers. Moreover, the response of these topologically protected structures to electric field and temperature shows a reversible phase transition from the skyrmion state to a trivial uniform ferroelectric state, accompanied by large tunability of the dielectric permittivity. Pulsed switching measurements show a time-dependent evolution and recovery of the skyrmion state (and macroscopic dielectric response). The interrelationship between topological and dielectric properties presents an opportunity to simultaneously manipulate both by a single, and easily controlled, stimulus, the applied electric field.
Polar skyrmions are topologically protected structures that can exist in (PbTiO
3
)
n
/(SrTiO
3
)
n
superlattices. Here, it is shown that they have negative permittivity at the surface, and that they can undergo a reversible phase transition with large dielectric tunability under an electric field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33046856</pmid><doi>10.1038/s41563-020-00818-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7203-8476</orcidid><orcidid>https://orcid.org/0000-0001-6435-3604</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0002-1195-1341</orcidid><orcidid>https://orcid.org/0000-0002-7618-6134</orcidid><orcidid>https://orcid.org/0000-0003-4164-5131</orcidid><orcidid>https://orcid.org/0000-0003-0723-6887</orcidid><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000-0002-5427-175X</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0000-0003-0524-1332</orcidid><orcidid>https://orcid.org/0000-0001-9823-0207</orcidid><orcidid>https://orcid.org/0000-0002-4541-0156</orcidid><orcidid>https://orcid.org/0000-0002-1625-8036</orcidid><orcidid>https://orcid.org/0000-0002-9957-8982</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><orcidid>https://orcid.org/0000000299578982</orcidid><orcidid>https://orcid.org/0000000305241332</orcidid><orcidid>https://orcid.org/0000000307236887</orcidid><orcidid>https://orcid.org/0000000227347819</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid><orcidid>https://orcid.org/0000000341645131</orcidid><orcidid>https://orcid.org/0000000348145308</orcidid><orcidid>https://orcid.org/0000000198230207</orcidid><orcidid>https://orcid.org/0000000272038476</orcidid><orcidid>https://orcid.org/000000025427175X</orcidid><orcidid>https://orcid.org/0000000211951341</orcidid><orcidid>https://orcid.org/0000000164353604</orcidid><orcidid>https://orcid.org/0000000333593781</orcidid><orcidid>https://orcid.org/0000000276186134</orcidid><orcidid>https://orcid.org/0000000341290473</orcidid><orcidid>https://orcid.org/0000000216258036</orcidid><orcidid>https://orcid.org/0000000245410156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2021-02, Vol.20 (2), p.194-201 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1785717 |
source | Springer Journals; Nature |
subjects | 639/301/119/996 639/766/119/996 Biomaterials Chemistry and Materials Science Condensed Matter Physics Dielectric properties Electric fields Electrical properties Electron diffraction Elementary excitations Ferroelectric materials Ferroelectricity ferroelectrics Hypothetical particles Lead titanates MATERIALS SCIENCE multiferroics Nanotechnology Optical and Electronic Materials Particle theory Permittivity Phase transitions Sheaths Solitary waves Strontium titanates Superlattices Topology |
title | Local negative permittivity and topological phase transition in polar skyrmions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20negative%20permittivity%20and%20topological%20phase%20transition%20in%20polar%20skyrmions&rft.jtitle=Nature%20materials&rft.au=Das,%20S.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-02-01&rft.volume=20&rft.issue=2&rft.spage=194&rft.epage=201&rft.pages=194-201&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-00818-y&rft_dat=%3Cproquest_osti_%3E2481412048%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481412048&rft_id=info:pmid/33046856&rfr_iscdi=true |