Data for training and testing radiation detection algorithms in an urban environment
The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built...
Gespeichert in:
Veröffentlicht in: | Scientific data 2020-10, Vol.7 (1) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Scientific data |
container_volume | 7 |
creator | Ghawaly, James M. Nicholson, Andrew D. Peplow, Douglas E. Anderson-Cook, Christine M. Myers, Kary L. Archer, Daniel E. Willis, Michael J. Quiter, Brian J. |
description | The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1785214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1785214</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17852143</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMoWLTvELwX0ja13v3BB-i9rE3arrQbSFaf3ygePHqZ-QaGbyGSQlVFpvW-XP7wWqQh3JVSealVVatENCdgkL3zkj0gIQ0SyEi2gd_swSAwOpLGsu0-BNPgPPI4B4lxkXz4W0xLT_SOZku8FasepmDTb2_E7nJujtfMRWsbOoyqsXNE0djm9aEqcl3-dXoBtyZCxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data for training and testing radiation detection algorithms in an urban environment</title><source>SpringerOpen</source><source>Nature Free</source><source>PubMed Central (PMC)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J.</creator><creatorcontrib>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</subject><ispartof>Scientific data, 2020-10, Vol.7 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000292081914 ; 0000000333821174 ; 0000000333976109 ; 0000000153035424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785214$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghawaly, James M.</creatorcontrib><creatorcontrib>Nicholson, Andrew D.</creatorcontrib><creatorcontrib>Peplow, Douglas E.</creatorcontrib><creatorcontrib>Anderson-Cook, Christine M.</creatorcontrib><creatorcontrib>Myers, Kary L.</creatorcontrib><creatorcontrib>Archer, Daniel E.</creatorcontrib><creatorcontrib>Willis, Michael J.</creatorcontrib><creatorcontrib>Quiter, Brian J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Data for training and testing radiation detection algorithms in an urban environment</title><title>Scientific data</title><description>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.</description><subject>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjM0KwjAQhIMoWLTvELwX0ja13v3BB-i9rE3arrQbSFaf3ygePHqZ-QaGbyGSQlVFpvW-XP7wWqQh3JVSealVVatENCdgkL3zkj0gIQ0SyEi2gd_swSAwOpLGsu0-BNPgPPI4B4lxkXz4W0xLT_SOZku8FasepmDTb2_E7nJujtfMRWsbOoyqsXNE0djm9aEqcl3-dXoBtyZCxQ</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Ghawaly, James M.</creator><creator>Nicholson, Andrew D.</creator><creator>Peplow, Douglas E.</creator><creator>Anderson-Cook, Christine M.</creator><creator>Myers, Kary L.</creator><creator>Archer, Daniel E.</creator><creator>Willis, Michael J.</creator><creator>Quiter, Brian J.</creator><general>Nature Publishing Group</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292081914</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000153035424</orcidid></search><sort><creationdate>20201005</creationdate><title>Data for training and testing radiation detection algorithms in an urban environment</title><author>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17852143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghawaly, James M.</creatorcontrib><creatorcontrib>Nicholson, Andrew D.</creatorcontrib><creatorcontrib>Peplow, Douglas E.</creatorcontrib><creatorcontrib>Anderson-Cook, Christine M.</creatorcontrib><creatorcontrib>Myers, Kary L.</creatorcontrib><creatorcontrib>Archer, Daniel E.</creatorcontrib><creatorcontrib>Willis, Michael J.</creatorcontrib><creatorcontrib>Quiter, Brian J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghawaly, James M.</au><au>Nicholson, Andrew D.</au><au>Peplow, Douglas E.</au><au>Anderson-Cook, Christine M.</au><au>Myers, Kary L.</au><au>Archer, Daniel E.</au><au>Willis, Michael J.</au><au>Quiter, Brian J.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data for training and testing radiation detection algorithms in an urban environment</atitle><jtitle>Scientific data</jtitle><date>2020-10-05</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><orcidid>https://orcid.org/0000000292081914</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000153035424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2020-10, Vol.7 (1) |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_osti_scitechconnect_1785214 |
source | SpringerOpen; Nature Free; PubMed Central (PMC); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION |
title | Data for training and testing radiation detection algorithms in an urban environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20for%20training%20and%20testing%20radiation%20detection%20algorithms%20in%20an%20urban%20environment&rft.jtitle=Scientific%20data&rft.au=Ghawaly,%20James%20M.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-10-05&rft.volume=7&rft.issue=1&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/&rft_dat=%3Costi%3E1785214%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |