Data for training and testing radiation detection algorithms in an urban environment

The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2020-10, Vol.7 (1)
Hauptverfasser: Ghawaly, James M., Nicholson, Andrew D., Peplow, Douglas E., Anderson-Cook, Christine M., Myers, Kary L., Archer, Daniel E., Willis, Michael J., Quiter, Brian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Scientific data
container_volume 7
creator Ghawaly, James M.
Nicholson, Andrew D.
Peplow, Douglas E.
Anderson-Cook, Christine M.
Myers, Kary L.
Archer, Daniel E.
Willis, Michael J.
Quiter, Brian J.
description The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1785214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1785214</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17852143</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMoWLTvELwX0ja13v3BB-i9rE3arrQbSFaf3ygePHqZ-QaGbyGSQlVFpvW-XP7wWqQh3JVSealVVatENCdgkL3zkj0gIQ0SyEi2gd_swSAwOpLGsu0-BNPgPPI4B4lxkXz4W0xLT_SOZku8FasepmDTb2_E7nJujtfMRWsbOoyqsXNE0djm9aEqcl3-dXoBtyZCxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data for training and testing radiation detection algorithms in an urban environment</title><source>SpringerOpen</source><source>Nature Free</source><source>PubMed Central (PMC)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J.</creator><creatorcontrib>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</subject><ispartof>Scientific data, 2020-10, Vol.7 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000292081914 ; 0000000333821174 ; 0000000333976109 ; 0000000153035424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785214$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghawaly, James M.</creatorcontrib><creatorcontrib>Nicholson, Andrew D.</creatorcontrib><creatorcontrib>Peplow, Douglas E.</creatorcontrib><creatorcontrib>Anderson-Cook, Christine M.</creatorcontrib><creatorcontrib>Myers, Kary L.</creatorcontrib><creatorcontrib>Archer, Daniel E.</creatorcontrib><creatorcontrib>Willis, Michael J.</creatorcontrib><creatorcontrib>Quiter, Brian J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Data for training and testing radiation detection algorithms in an urban environment</title><title>Scientific data</title><description>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.</description><subject>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjM0KwjAQhIMoWLTvELwX0ja13v3BB-i9rE3arrQbSFaf3ygePHqZ-QaGbyGSQlVFpvW-XP7wWqQh3JVSealVVatENCdgkL3zkj0gIQ0SyEi2gd_swSAwOpLGsu0-BNPgPPI4B4lxkXz4W0xLT_SOZku8FasepmDTb2_E7nJujtfMRWsbOoyqsXNE0djm9aEqcl3-dXoBtyZCxQ</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Ghawaly, James M.</creator><creator>Nicholson, Andrew D.</creator><creator>Peplow, Douglas E.</creator><creator>Anderson-Cook, Christine M.</creator><creator>Myers, Kary L.</creator><creator>Archer, Daniel E.</creator><creator>Willis, Michael J.</creator><creator>Quiter, Brian J.</creator><general>Nature Publishing Group</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292081914</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000153035424</orcidid></search><sort><creationdate>20201005</creationdate><title>Data for training and testing radiation detection algorithms in an urban environment</title><author>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17852143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghawaly, James M.</creatorcontrib><creatorcontrib>Nicholson, Andrew D.</creatorcontrib><creatorcontrib>Peplow, Douglas E.</creatorcontrib><creatorcontrib>Anderson-Cook, Christine M.</creatorcontrib><creatorcontrib>Myers, Kary L.</creatorcontrib><creatorcontrib>Archer, Daniel E.</creatorcontrib><creatorcontrib>Willis, Michael J.</creatorcontrib><creatorcontrib>Quiter, Brian J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghawaly, James M.</au><au>Nicholson, Andrew D.</au><au>Peplow, Douglas E.</au><au>Anderson-Cook, Christine M.</au><au>Myers, Kary L.</au><au>Archer, Daniel E.</au><au>Willis, Michael J.</au><au>Quiter, Brian J.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data for training and testing radiation detection algorithms in an urban environment</atitle><jtitle>Scientific data</jtitle><date>2020-10-05</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><orcidid>https://orcid.org/0000000292081914</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000153035424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2020-10, Vol.7 (1)
issn 2052-4463
2052-4463
language eng
recordid cdi_osti_scitechconnect_1785214
source SpringerOpen; Nature Free; PubMed Central (PMC); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION
title Data for training and testing radiation detection algorithms in an urban environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20for%20training%20and%20testing%20radiation%20detection%20algorithms%20in%20an%20urban%20environment&rft.jtitle=Scientific%20data&rft.au=Ghawaly,%20James%20M.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-10-05&rft.volume=7&rft.issue=1&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/&rft_dat=%3Costi%3E1785214%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true