Tree Canopies Reflect Mycorrhizal Composition
Mycorrhizae alter global patterns of CO2 fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2021-05, Vol.48 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 48 |
creator | Sousa, Daniel Fisher, Joshua B. Galvan, Fernando Romero Pavlick, Ryan P. Cordell, Susan Giambelluca, Thomas W. Giardina, Christian P. Gilbert, Gregory S. Imran‐Narahari, Faith Litton, Creighton M. Lutz, James A. North, Malcolm P. Orwig, David A. Ostertag, Rebecca Sack, Lawren Phillips, Richard P. |
description | Mycorrhizae alter global patterns of CO2 fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be improved by the novel technology of imaging spectroscopy because mycorrhizal signatures propagate up from plant roots to impact forest canopy chemistry. We analyzed measurements from 143 airborne imaging spectroscopy surveys over 112,975 individual trees collected across 13 years. Results show remarkable accuracy in capturing ground truth observations of mycorrhizal associations from canopy signals across disparate landscapes (R2 = 0.92, p |
doi_str_mv | 10.1029/2021GL092764 |
format | Article |
fullrecord | <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1785015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GRL62412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3432-ca70974993283d83960a729ac297eacef2560a5b89a1f78f3719fdafe4646f93</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCtbVmz-geLY6-WjTOUrRKlSEpfcQswkb6TYlKUj99VbWgydPM8w8DMNLyDWFOwoM7xkw2naATFbihGQUhShqAHlKMgBc-3VxTi5S-gAADpxmpOijtXmjxzB5m_KtdYM1c_66mBDj3n_pIW_CYQrJzz6Ml-TM6SHZq9-6If3TY988F91b-9I8dIXhgrPCaAkoBSJnNd_VHCvQkqE2DKXVxjpWrpPyvUZNnawdlxTdTjsrKlE55Btyczwb0uxVMn62Zm_COK6vKSrrEmi5otsjMjGkFK1TU_QHHRdFQf3Eof7GsXJ25J9-sMu_VrXbrmKCMv4NAHpfFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tree Canopies Reflect Mycorrhizal Composition</title><source>Wiley Online Library</source><source>Wiley Online Library Journals</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Sousa, Daniel ; Fisher, Joshua B. ; Galvan, Fernando Romero ; Pavlick, Ryan P. ; Cordell, Susan ; Giambelluca, Thomas W. ; Giardina, Christian P. ; Gilbert, Gregory S. ; Imran‐Narahari, Faith ; Litton, Creighton M. ; Lutz, James A. ; North, Malcolm P. ; Orwig, David A. ; Ostertag, Rebecca ; Sack, Lawren ; Phillips, Richard P.</creator><creatorcontrib>Sousa, Daniel ; Fisher, Joshua B. ; Galvan, Fernando Romero ; Pavlick, Ryan P. ; Cordell, Susan ; Giambelluca, Thomas W. ; Giardina, Christian P. ; Gilbert, Gregory S. ; Imran‐Narahari, Faith ; Litton, Creighton M. ; Lutz, James A. ; North, Malcolm P. ; Orwig, David A. ; Ostertag, Rebecca ; Sack, Lawren ; Phillips, Richard P.</creatorcontrib><description>Mycorrhizae alter global patterns of CO2 fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be improved by the novel technology of imaging spectroscopy because mycorrhizal signatures propagate up from plant roots to impact forest canopy chemistry. We analyzed measurements from 143 airborne imaging spectroscopy surveys over 112,975 individual trees collected across 13 years. Results show remarkable accuracy in capturing ground truth observations of mycorrhizal associations from canopy signals across disparate landscapes (R2 = 0.92, p < 0.01). Upcoming imaging spectroscopy satellite missions can reveal new insights into landscape‐scale variations in water, nitrogen, phosphorus, carotenoid/anthocyanin, and cellulose/lignin composition. Applied globally, this approach could improve the spatial precision of mycorrhizal distributions by a factor of roughly 104 and facilitate the incorporation of dynamic shifts in forest composition into Earth system models.
Plain Language Summary
Mycorrhizae (plant root‐fungus symbioses) play a central role in ecosystems, and differences in form and function between the two main types of mycorrhizae can influence ecosystem sensitivity to global environmental changes. While the symbioses are located belowground, we show here that they are also associated with subtle but detectable signatures in the structure and composition of forest canopies. As a result, the abundance of each mycorrhizal type can be mapped with both accuracy and precision across a diverse set of ecosystems using the emerging technology of imaging spectroscopy. This advance opens the door to a roughly 10,000x improvement in the precision of current global mycorrhizal maps, which should facilitate advances in several fields of Earth system science.
Key Points
First retrieval of mycorrhizal type from imaging spectroscopy
Mycorrhizhal type can be mapped with accuracy (R2 = 0.92) across disparate landscapes
Improvement in spatial precision of roughly 104 over current methods</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2021GL092764</identifier><language>eng</language><publisher>United States: American Geophysical Union (AGU)</publisher><subject>biogeochemistry ; foliar traits ; imaging spectroscopy ; mycorrhizae ; nutrient cycling ; remote sensing</subject><ispartof>Geophysical research letters, 2021-05, Vol.48 (10), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3432-ca70974993283d83960a729ac297eacef2560a5b89a1f78f3719fdafe4646f93</citedby><cites>FETCH-LOGICAL-c3432-ca70974993283d83960a729ac297eacef2560a5b89a1f78f3719fdafe4646f93</cites><orcidid>0000-0002-1632-1955 ; 0000-0002-5195-9903 ; 0000-0003-4734-9085 ; 0000-0002-6798-3780 ; 0000-0002-9090-784X ; 0000-0002-2560-0710 ; 0000-0001-7822-3560 ; 0000000216321955 ; 0000000178223560 ; 0000000267983780 ; 0000000225600710 ; 0000000347349085 ; 0000000251959903 ; 000000029090784X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021GL092764$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021GL092764$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1785015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sousa, Daniel</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Galvan, Fernando Romero</creatorcontrib><creatorcontrib>Pavlick, Ryan P.</creatorcontrib><creatorcontrib>Cordell, Susan</creatorcontrib><creatorcontrib>Giambelluca, Thomas W.</creatorcontrib><creatorcontrib>Giardina, Christian P.</creatorcontrib><creatorcontrib>Gilbert, Gregory S.</creatorcontrib><creatorcontrib>Imran‐Narahari, Faith</creatorcontrib><creatorcontrib>Litton, Creighton M.</creatorcontrib><creatorcontrib>Lutz, James A.</creatorcontrib><creatorcontrib>North, Malcolm P.</creatorcontrib><creatorcontrib>Orwig, David A.</creatorcontrib><creatorcontrib>Ostertag, Rebecca</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><creatorcontrib>Phillips, Richard P.</creatorcontrib><title>Tree Canopies Reflect Mycorrhizal Composition</title><title>Geophysical research letters</title><description>Mycorrhizae alter global patterns of CO2 fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be improved by the novel technology of imaging spectroscopy because mycorrhizal signatures propagate up from plant roots to impact forest canopy chemistry. We analyzed measurements from 143 airborne imaging spectroscopy surveys over 112,975 individual trees collected across 13 years. Results show remarkable accuracy in capturing ground truth observations of mycorrhizal associations from canopy signals across disparate landscapes (R2 = 0.92, p < 0.01). Upcoming imaging spectroscopy satellite missions can reveal new insights into landscape‐scale variations in water, nitrogen, phosphorus, carotenoid/anthocyanin, and cellulose/lignin composition. Applied globally, this approach could improve the spatial precision of mycorrhizal distributions by a factor of roughly 104 and facilitate the incorporation of dynamic shifts in forest composition into Earth system models.
Plain Language Summary
Mycorrhizae (plant root‐fungus symbioses) play a central role in ecosystems, and differences in form and function between the two main types of mycorrhizae can influence ecosystem sensitivity to global environmental changes. While the symbioses are located belowground, we show here that they are also associated with subtle but detectable signatures in the structure and composition of forest canopies. As a result, the abundance of each mycorrhizal type can be mapped with both accuracy and precision across a diverse set of ecosystems using the emerging technology of imaging spectroscopy. This advance opens the door to a roughly 10,000x improvement in the precision of current global mycorrhizal maps, which should facilitate advances in several fields of Earth system science.
Key Points
First retrieval of mycorrhizal type from imaging spectroscopy
Mycorrhizhal type can be mapped with accuracy (R2 = 0.92) across disparate landscapes
Improvement in spatial precision of roughly 104 over current methods</description><subject>biogeochemistry</subject><subject>foliar traits</subject><subject>imaging spectroscopy</subject><subject>mycorrhizae</subject><subject>nutrient cycling</subject><subject>remote sensing</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCtbVmz-geLY6-WjTOUrRKlSEpfcQswkb6TYlKUj99VbWgydPM8w8DMNLyDWFOwoM7xkw2naATFbihGQUhShqAHlKMgBc-3VxTi5S-gAADpxmpOijtXmjxzB5m_KtdYM1c_66mBDj3n_pIW_CYQrJzz6Ml-TM6SHZq9-6If3TY988F91b-9I8dIXhgrPCaAkoBSJnNd_VHCvQkqE2DKXVxjpWrpPyvUZNnawdlxTdTjsrKlE55Btyczwb0uxVMn62Zm_COK6vKSrrEmi5otsjMjGkFK1TU_QHHRdFQf3Eof7GsXJ25J9-sMu_VrXbrmKCMv4NAHpfFA</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Sousa, Daniel</creator><creator>Fisher, Joshua B.</creator><creator>Galvan, Fernando Romero</creator><creator>Pavlick, Ryan P.</creator><creator>Cordell, Susan</creator><creator>Giambelluca, Thomas W.</creator><creator>Giardina, Christian P.</creator><creator>Gilbert, Gregory S.</creator><creator>Imran‐Narahari, Faith</creator><creator>Litton, Creighton M.</creator><creator>Lutz, James A.</creator><creator>North, Malcolm P.</creator><creator>Orwig, David A.</creator><creator>Ostertag, Rebecca</creator><creator>Sack, Lawren</creator><creator>Phillips, Richard P.</creator><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1632-1955</orcidid><orcidid>https://orcid.org/0000-0002-5195-9903</orcidid><orcidid>https://orcid.org/0000-0003-4734-9085</orcidid><orcidid>https://orcid.org/0000-0002-6798-3780</orcidid><orcidid>https://orcid.org/0000-0002-9090-784X</orcidid><orcidid>https://orcid.org/0000-0002-2560-0710</orcidid><orcidid>https://orcid.org/0000-0001-7822-3560</orcidid><orcidid>https://orcid.org/0000000216321955</orcidid><orcidid>https://orcid.org/0000000178223560</orcidid><orcidid>https://orcid.org/0000000267983780</orcidid><orcidid>https://orcid.org/0000000225600710</orcidid><orcidid>https://orcid.org/0000000347349085</orcidid><orcidid>https://orcid.org/0000000251959903</orcidid><orcidid>https://orcid.org/000000029090784X</orcidid></search><sort><creationdate>20210528</creationdate><title>Tree Canopies Reflect Mycorrhizal Composition</title><author>Sousa, Daniel ; Fisher, Joshua B. ; Galvan, Fernando Romero ; Pavlick, Ryan P. ; Cordell, Susan ; Giambelluca, Thomas W. ; Giardina, Christian P. ; Gilbert, Gregory S. ; Imran‐Narahari, Faith ; Litton, Creighton M. ; Lutz, James A. ; North, Malcolm P. ; Orwig, David A. ; Ostertag, Rebecca ; Sack, Lawren ; Phillips, Richard P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3432-ca70974993283d83960a729ac297eacef2560a5b89a1f78f3719fdafe4646f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biogeochemistry</topic><topic>foliar traits</topic><topic>imaging spectroscopy</topic><topic>mycorrhizae</topic><topic>nutrient cycling</topic><topic>remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, Daniel</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Galvan, Fernando Romero</creatorcontrib><creatorcontrib>Pavlick, Ryan P.</creatorcontrib><creatorcontrib>Cordell, Susan</creatorcontrib><creatorcontrib>Giambelluca, Thomas W.</creatorcontrib><creatorcontrib>Giardina, Christian P.</creatorcontrib><creatorcontrib>Gilbert, Gregory S.</creatorcontrib><creatorcontrib>Imran‐Narahari, Faith</creatorcontrib><creatorcontrib>Litton, Creighton M.</creatorcontrib><creatorcontrib>Lutz, James A.</creatorcontrib><creatorcontrib>North, Malcolm P.</creatorcontrib><creatorcontrib>Orwig, David A.</creatorcontrib><creatorcontrib>Ostertag, Rebecca</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><creatorcontrib>Phillips, Richard P.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa, Daniel</au><au>Fisher, Joshua B.</au><au>Galvan, Fernando Romero</au><au>Pavlick, Ryan P.</au><au>Cordell, Susan</au><au>Giambelluca, Thomas W.</au><au>Giardina, Christian P.</au><au>Gilbert, Gregory S.</au><au>Imran‐Narahari, Faith</au><au>Litton, Creighton M.</au><au>Lutz, James A.</au><au>North, Malcolm P.</au><au>Orwig, David A.</au><au>Ostertag, Rebecca</au><au>Sack, Lawren</au><au>Phillips, Richard P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tree Canopies Reflect Mycorrhizal Composition</atitle><jtitle>Geophysical research letters</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>48</volume><issue>10</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Mycorrhizae alter global patterns of CO2 fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be improved by the novel technology of imaging spectroscopy because mycorrhizal signatures propagate up from plant roots to impact forest canopy chemistry. We analyzed measurements from 143 airborne imaging spectroscopy surveys over 112,975 individual trees collected across 13 years. Results show remarkable accuracy in capturing ground truth observations of mycorrhizal associations from canopy signals across disparate landscapes (R2 = 0.92, p < 0.01). Upcoming imaging spectroscopy satellite missions can reveal new insights into landscape‐scale variations in water, nitrogen, phosphorus, carotenoid/anthocyanin, and cellulose/lignin composition. Applied globally, this approach could improve the spatial precision of mycorrhizal distributions by a factor of roughly 104 and facilitate the incorporation of dynamic shifts in forest composition into Earth system models.
Plain Language Summary
Mycorrhizae (plant root‐fungus symbioses) play a central role in ecosystems, and differences in form and function between the two main types of mycorrhizae can influence ecosystem sensitivity to global environmental changes. While the symbioses are located belowground, we show here that they are also associated with subtle but detectable signatures in the structure and composition of forest canopies. As a result, the abundance of each mycorrhizal type can be mapped with both accuracy and precision across a diverse set of ecosystems using the emerging technology of imaging spectroscopy. This advance opens the door to a roughly 10,000x improvement in the precision of current global mycorrhizal maps, which should facilitate advances in several fields of Earth system science.
Key Points
First retrieval of mycorrhizal type from imaging spectroscopy
Mycorrhizhal type can be mapped with accuracy (R2 = 0.92) across disparate landscapes
Improvement in spatial precision of roughly 104 over current methods</abstract><cop>United States</cop><pub>American Geophysical Union (AGU)</pub><doi>10.1029/2021GL092764</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1632-1955</orcidid><orcidid>https://orcid.org/0000-0002-5195-9903</orcidid><orcidid>https://orcid.org/0000-0003-4734-9085</orcidid><orcidid>https://orcid.org/0000-0002-6798-3780</orcidid><orcidid>https://orcid.org/0000-0002-9090-784X</orcidid><orcidid>https://orcid.org/0000-0002-2560-0710</orcidid><orcidid>https://orcid.org/0000-0001-7822-3560</orcidid><orcidid>https://orcid.org/0000000216321955</orcidid><orcidid>https://orcid.org/0000000178223560</orcidid><orcidid>https://orcid.org/0000000267983780</orcidid><orcidid>https://orcid.org/0000000225600710</orcidid><orcidid>https://orcid.org/0000000347349085</orcidid><orcidid>https://orcid.org/0000000251959903</orcidid><orcidid>https://orcid.org/000000029090784X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2021-05, Vol.48 (10), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_osti_scitechconnect_1785015 |
source | Wiley Online Library; Wiley Online Library Journals; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library |
subjects | biogeochemistry foliar traits imaging spectroscopy mycorrhizae nutrient cycling remote sensing |
title | Tree Canopies Reflect Mycorrhizal Composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tree%20Canopies%20Reflect%20Mycorrhizal%20Composition&rft.jtitle=Geophysical%20research%20letters&rft.au=Sousa,%20Daniel&rft.date=2021-05-28&rft.volume=48&rft.issue=10&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2021GL092764&rft_dat=%3Cwiley_osti_%3EGRL62412%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |