High-accuracy waveforms for black hole-neutron star systems with spinning black holes
The availability of accurate numerical waveforms is an important requirement for the creation and calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron star binaries (BHNS), very few accurate waveforms are however publicly available. Most recent models a...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-03, Vol.103 (6), Article 064007 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review. D |
container_volume | 103 |
creator | Foucart, Francois Chernoglazov, Alexander Boyle, Michael Hinderer, Tanja Miller, Max Moxon, Jordan Scheel, Mark A. Deppe, Nils Duez, Matthew D. Hébert, Francois Kidder, Lawrence E. Throwe, William Pfeiffer, Harald P. |
description | The availability of accurate numerical waveforms is an important requirement for the creation and calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron star binaries (BHNS), very few accurate waveforms are however publicly available. Most recent models are calibrated to a large number of older simulations with good parameter space coverage for low-spin nonprecessing binaries but limited accuracy, and a much smaller number of longer, more recent simulations limited to nonspinning black holes. In this paper, we present long, accurate numerical waveforms for three new systems that include rapidly spinning black holes, and one precessing configuration. We study in detail the accuracy of the simulations, and in particular perform for the first time in the context of BHNS binaries a detailed comparison of waveform extrapolation methods to the results of Cauchy characteristic extraction. The new waveforms have < 0.1 rad phase errors during inspiral, rising to ∼ ( 0.2 – 0.4 ) rad errors at merger, and ≲ 1 % error in their amplitude. We compute the faithfulness of recent analytical models to these numerical results for the late inspiral and merger phases covered by the numerical simulations, and find that models specifically designed for BHNS binaries perform well (faithfulness F > 0.99 ) for binaries seen face on. For edge-on observations, particularly for precessing systems, disagreements between models and simulations increase, and models that include precession and/or higher-order modes start to perform better than BHNS models that currently lack these features. |
doi_str_mv | 10.1103/PhysRevD.103.064007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1784938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518775465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-4c9b37fa618790f106cd23227eb904ff54ea01c1fa2e518e96e624f025150cfd3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGp_gZtB11NvHjOZWUp9VCgoYtchTZPO1DapSaZl_r0pVXFzzznwcbgchK4xjDEGevfW9OFd7x_GKYyhZAD8DA0I45ADkPr8z2O4RKMQ1pBsCTXHeIDm03bV5FKpzkvVZwe518b5bcjSzRYbqT6zxm10bnUXvbNZiNJnoQ9RJ-bQxiYLu9ba1q7-0eEKXRi5CXr0o0M0f3r8mEzz2evzy-R-lisKLOZM1QvKjSxxxWswGEq1JJQQrhc1MGMKpiVghY0kusCVrktdEmaAFLgAZZZ0iG5OvS7EVgTVRq0a5azVKgrMK1bTKkG3J2jn3VenQxRr13mb_hKpqOK8YGWRKHqilHcheG3Ezrdb6XuBQRx3Fr87i2M47Uy_ARqfcfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518775465</pqid></control><display><type>article</type><title>High-accuracy waveforms for black hole-neutron star systems with spinning black holes</title><source>American Physical Society Journals</source><creator>Foucart, Francois ; Chernoglazov, Alexander ; Boyle, Michael ; Hinderer, Tanja ; Miller, Max ; Moxon, Jordan ; Scheel, Mark A. ; Deppe, Nils ; Duez, Matthew D. ; Hébert, Francois ; Kidder, Lawrence E. ; Throwe, William ; Pfeiffer, Harald P.</creator><creatorcontrib>Foucart, Francois ; Chernoglazov, Alexander ; Boyle, Michael ; Hinderer, Tanja ; Miller, Max ; Moxon, Jordan ; Scheel, Mark A. ; Deppe, Nils ; Duez, Matthew D. ; Hébert, Francois ; Kidder, Lawrence E. ; Throwe, William ; Pfeiffer, Harald P. ; Univ. of New Hampshire, Durham, NH (United States)</creatorcontrib><description>The availability of accurate numerical waveforms is an important requirement for the creation and calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron star binaries (BHNS), very few accurate waveforms are however publicly available. Most recent models are calibrated to a large number of older simulations with good parameter space coverage for low-spin nonprecessing binaries but limited accuracy, and a much smaller number of longer, more recent simulations limited to nonspinning black holes. In this paper, we present long, accurate numerical waveforms for three new systems that include rapidly spinning black holes, and one precessing configuration. We study in detail the accuracy of the simulations, and in particular perform for the first time in the context of BHNS binaries a detailed comparison of waveform extrapolation methods to the results of Cauchy characteristic extraction. The new waveforms have < 0.1 rad phase errors during inspiral, rising to ∼ ( 0.2 – 0.4 ) rad errors at merger, and ≲ 1 % error in their amplitude. We compute the faithfulness of recent analytical models to these numerical results for the late inspiral and merger phases covered by the numerical simulations, and find that models specifically designed for BHNS binaries perform well (faithfulness F > 0.99 ) for binaries seen face on. For edge-on observations, particularly for precessing systems, disagreements between models and simulations increase, and models that include precession and/or higher-order modes start to perform better than BHNS models that currently lack these features.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.064007</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Accuracy ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Binary stars ; Black holes ; Gravitational waves ; Mathematical models ; Neutron stars ; Simulation ; Stellar systems ; Waveforms</subject><ispartof>Physical review. D, 2021-03, Vol.103 (6), Article 064007</ispartof><rights>Copyright American Physical Society Mar 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-4c9b37fa618790f106cd23227eb904ff54ea01c1fa2e518e96e624f025150cfd3</citedby><cites>FETCH-LOGICAL-c304t-4c9b37fa618790f106cd23227eb904ff54ea01c1fa2e518e96e624f025150cfd3</cites><orcidid>0000-0003-4617-4738 ; 0000-0001-5392-7342 ; 0000-0001-5059-4378 ; 0000000346174738 ; 0000000150594378 ; 0000000153927342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1784938$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Foucart, Francois</creatorcontrib><creatorcontrib>Chernoglazov, Alexander</creatorcontrib><creatorcontrib>Boyle, Michael</creatorcontrib><creatorcontrib>Hinderer, Tanja</creatorcontrib><creatorcontrib>Miller, Max</creatorcontrib><creatorcontrib>Moxon, Jordan</creatorcontrib><creatorcontrib>Scheel, Mark A.</creatorcontrib><creatorcontrib>Deppe, Nils</creatorcontrib><creatorcontrib>Duez, Matthew D.</creatorcontrib><creatorcontrib>Hébert, Francois</creatorcontrib><creatorcontrib>Kidder, Lawrence E.</creatorcontrib><creatorcontrib>Throwe, William</creatorcontrib><creatorcontrib>Pfeiffer, Harald P.</creatorcontrib><creatorcontrib>Univ. of New Hampshire, Durham, NH (United States)</creatorcontrib><title>High-accuracy waveforms for black hole-neutron star systems with spinning black holes</title><title>Physical review. D</title><description>The availability of accurate numerical waveforms is an important requirement for the creation and calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron star binaries (BHNS), very few accurate waveforms are however publicly available. Most recent models are calibrated to a large number of older simulations with good parameter space coverage for low-spin nonprecessing binaries but limited accuracy, and a much smaller number of longer, more recent simulations limited to nonspinning black holes. In this paper, we present long, accurate numerical waveforms for three new systems that include rapidly spinning black holes, and one precessing configuration. We study in detail the accuracy of the simulations, and in particular perform for the first time in the context of BHNS binaries a detailed comparison of waveform extrapolation methods to the results of Cauchy characteristic extraction. The new waveforms have < 0.1 rad phase errors during inspiral, rising to ∼ ( 0.2 – 0.4 ) rad errors at merger, and ≲ 1 % error in their amplitude. We compute the faithfulness of recent analytical models to these numerical results for the late inspiral and merger phases covered by the numerical simulations, and find that models specifically designed for BHNS binaries perform well (faithfulness F > 0.99 ) for binaries seen face on. For edge-on observations, particularly for precessing systems, disagreements between models and simulations increase, and models that include precession and/or higher-order modes start to perform better than BHNS models that currently lack these features.</description><subject>Accuracy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Gravitational waves</subject><subject>Mathematical models</subject><subject>Neutron stars</subject><subject>Simulation</subject><subject>Stellar systems</subject><subject>Waveforms</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWGp_gZtB11NvHjOZWUp9VCgoYtchTZPO1DapSaZl_r0pVXFzzznwcbgchK4xjDEGevfW9OFd7x_GKYyhZAD8DA0I45ADkPr8z2O4RKMQ1pBsCTXHeIDm03bV5FKpzkvVZwe518b5bcjSzRYbqT6zxm10bnUXvbNZiNJnoQ9RJ-bQxiYLu9ba1q7-0eEKXRi5CXr0o0M0f3r8mEzz2evzy-R-lisKLOZM1QvKjSxxxWswGEq1JJQQrhc1MGMKpiVghY0kusCVrktdEmaAFLgAZZZ0iG5OvS7EVgTVRq0a5azVKgrMK1bTKkG3J2jn3VenQxRr13mb_hKpqOK8YGWRKHqilHcheG3Ezrdb6XuBQRx3Fr87i2M47Uy_ARqfcfs</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Foucart, Francois</creator><creator>Chernoglazov, Alexander</creator><creator>Boyle, Michael</creator><creator>Hinderer, Tanja</creator><creator>Miller, Max</creator><creator>Moxon, Jordan</creator><creator>Scheel, Mark A.</creator><creator>Deppe, Nils</creator><creator>Duez, Matthew D.</creator><creator>Hébert, Francois</creator><creator>Kidder, Lawrence E.</creator><creator>Throwe, William</creator><creator>Pfeiffer, Harald P.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4617-4738</orcidid><orcidid>https://orcid.org/0000-0001-5392-7342</orcidid><orcidid>https://orcid.org/0000-0001-5059-4378</orcidid><orcidid>https://orcid.org/0000000346174738</orcidid><orcidid>https://orcid.org/0000000150594378</orcidid><orcidid>https://orcid.org/0000000153927342</orcidid></search><sort><creationdate>20210304</creationdate><title>High-accuracy waveforms for black hole-neutron star systems with spinning black holes</title><author>Foucart, Francois ; Chernoglazov, Alexander ; Boyle, Michael ; Hinderer, Tanja ; Miller, Max ; Moxon, Jordan ; Scheel, Mark A. ; Deppe, Nils ; Duez, Matthew D. ; Hébert, Francois ; Kidder, Lawrence E. ; Throwe, William ; Pfeiffer, Harald P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-4c9b37fa618790f106cd23227eb904ff54ea01c1fa2e518e96e624f025150cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Gravitational waves</topic><topic>Mathematical models</topic><topic>Neutron stars</topic><topic>Simulation</topic><topic>Stellar systems</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foucart, Francois</creatorcontrib><creatorcontrib>Chernoglazov, Alexander</creatorcontrib><creatorcontrib>Boyle, Michael</creatorcontrib><creatorcontrib>Hinderer, Tanja</creatorcontrib><creatorcontrib>Miller, Max</creatorcontrib><creatorcontrib>Moxon, Jordan</creatorcontrib><creatorcontrib>Scheel, Mark A.</creatorcontrib><creatorcontrib>Deppe, Nils</creatorcontrib><creatorcontrib>Duez, Matthew D.</creatorcontrib><creatorcontrib>Hébert, Francois</creatorcontrib><creatorcontrib>Kidder, Lawrence E.</creatorcontrib><creatorcontrib>Throwe, William</creatorcontrib><creatorcontrib>Pfeiffer, Harald P.</creatorcontrib><creatorcontrib>Univ. of New Hampshire, Durham, NH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foucart, Francois</au><au>Chernoglazov, Alexander</au><au>Boyle, Michael</au><au>Hinderer, Tanja</au><au>Miller, Max</au><au>Moxon, Jordan</au><au>Scheel, Mark A.</au><au>Deppe, Nils</au><au>Duez, Matthew D.</au><au>Hébert, Francois</au><au>Kidder, Lawrence E.</au><au>Throwe, William</au><au>Pfeiffer, Harald P.</au><aucorp>Univ. of New Hampshire, Durham, NH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-accuracy waveforms for black hole-neutron star systems with spinning black holes</atitle><jtitle>Physical review. D</jtitle><date>2021-03-04</date><risdate>2021</risdate><volume>103</volume><issue>6</issue><artnum>064007</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The availability of accurate numerical waveforms is an important requirement for the creation and calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron star binaries (BHNS), very few accurate waveforms are however publicly available. Most recent models are calibrated to a large number of older simulations with good parameter space coverage for low-spin nonprecessing binaries but limited accuracy, and a much smaller number of longer, more recent simulations limited to nonspinning black holes. In this paper, we present long, accurate numerical waveforms for three new systems that include rapidly spinning black holes, and one precessing configuration. We study in detail the accuracy of the simulations, and in particular perform for the first time in the context of BHNS binaries a detailed comparison of waveform extrapolation methods to the results of Cauchy characteristic extraction. The new waveforms have < 0.1 rad phase errors during inspiral, rising to ∼ ( 0.2 – 0.4 ) rad errors at merger, and ≲ 1 % error in their amplitude. We compute the faithfulness of recent analytical models to these numerical results for the late inspiral and merger phases covered by the numerical simulations, and find that models specifically designed for BHNS binaries perform well (faithfulness F > 0.99 ) for binaries seen face on. For edge-on observations, particularly for precessing systems, disagreements between models and simulations increase, and models that include precession and/or higher-order modes start to perform better than BHNS models that currently lack these features.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.064007</doi><orcidid>https://orcid.org/0000-0003-4617-4738</orcidid><orcidid>https://orcid.org/0000-0001-5392-7342</orcidid><orcidid>https://orcid.org/0000-0001-5059-4378</orcidid><orcidid>https://orcid.org/0000000346174738</orcidid><orcidid>https://orcid.org/0000000150594378</orcidid><orcidid>https://orcid.org/0000000153927342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-03, Vol.103 (6), Article 064007 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1784938 |
source | American Physical Society Journals |
subjects | Accuracy ASTRONOMY AND ASTROPHYSICS Astrophysics Binary stars Black holes Gravitational waves Mathematical models Neutron stars Simulation Stellar systems Waveforms |
title | High-accuracy waveforms for black hole-neutron star systems with spinning black holes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-accuracy%20waveforms%20for%20black%20hole-neutron%20star%20systems%20with%20spinning%20black%20holes&rft.jtitle=Physical%20review.%20D&rft.au=Foucart,%20Francois&rft.aucorp=Univ.%20of%20New%20Hampshire,%20Durham,%20NH%20(United%20States)&rft.date=2021-03-04&rft.volume=103&rft.issue=6&rft.artnum=064007&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.064007&rft_dat=%3Cproquest_osti_%3E2518775465%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518775465&rft_id=info:pmid/&rfr_iscdi=true |