Quantum Plasmonic Sensors

The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2021-04, Vol.121 (8), p.4743-4804
Hauptverfasser: Lee, Changhyoup, Lawrie, Benjamin, Pooser, Raphael, Lee, Kwang-Geol, Rockstuhl, Carsten, Tame, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4804
container_issue 8
container_start_page 4743
container_title Chemical reviews
container_volume 121
creator Lee, Changhyoup
Lawrie, Benjamin
Pooser, Raphael
Lee, Kwang-Geol
Rockstuhl, Carsten
Tame, Mark
description The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.
doi_str_mv 10.1021/acs.chemrev.0c01028
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1783039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2523164659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gAgy9MabbiefbS9l-AUDFfU6ZGnCOtZmJq3gvzeldRdeeBVOeN73cB6ELjDMMBA8VzrM9NpU3nzNQEP8yw7QGHMCichyOERjAMgTIgQfoZMQNnHknKTHaERpmqWEkzE6f21V3bTV9GWrQuXqUk_fTB2cD6foyKptMGfDO0Ef93fvi8dk-fzwtLhdJooBNIlKFRY6V7SwUGSGZyzXilmTKUx4utKaaUEFA2UxZ1aogjKOGePG5oyzwtIJuup7XWhKGXTZGL3Wrq6NbiROMwo0j9BND-28-2xNaGRVBm22W1Ub1wZJOKTdQYJE9PoPunGtr-MJkSIUCyZ4V0h7SnsXgjdW7nxZKf8tMchOr4x65aBXDnpj6nLobleVKfaZX58RmPdAl97v_a_yB6GWheI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523164659</pqid></control><display><type>article</type><title>Quantum Plasmonic Sensors</title><source>American Chemical Society Journals</source><creator>Lee, Changhyoup ; Lawrie, Benjamin ; Pooser, Raphael ; Lee, Kwang-Geol ; Rockstuhl, Carsten ; Tame, Mark</creator><creatorcontrib>Lee, Changhyoup ; Lawrie, Benjamin ; Pooser, Raphael ; Lee, Kwang-Geol ; Rockstuhl, Carsten ; Tame, Mark ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c01028</identifier><identifier>PMID: 33787252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Commercialization ; Electromagnetic fields ; Optics ; OTHER INSTRUMENTATION ; Plasmonics ; Sensitivity ; Sensors</subject><ispartof>Chemical reviews, 2021-04, Vol.121 (8), p.4743-4804</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 28, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</citedby><cites>FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</cites><orcidid>0000-0003-1431-066X ; 0000-0002-5058-0248 ; 0000000297954403 ; 0000000258680526 ; 000000022922453X ; 0000000214014230 ; 000000031431066X ; 0000000250580248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c01028$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33787252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1783039$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Changhyoup</creatorcontrib><creatorcontrib>Lawrie, Benjamin</creatorcontrib><creatorcontrib>Pooser, Raphael</creatorcontrib><creatorcontrib>Lee, Kwang-Geol</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Tame, Mark</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Quantum Plasmonic Sensors</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.</description><subject>Commercialization</subject><subject>Electromagnetic fields</subject><subject>Optics</subject><subject>OTHER INSTRUMENTATION</subject><subject>Plasmonics</subject><subject>Sensitivity</subject><subject>Sensors</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk5_gAgy9MabbiefbS9l-AUDFfU6ZGnCOtZmJq3gvzeldRdeeBVOeN73cB6ELjDMMBA8VzrM9NpU3nzNQEP8yw7QGHMCichyOERjAMgTIgQfoZMQNnHknKTHaERpmqWEkzE6f21V3bTV9GWrQuXqUk_fTB2cD6foyKptMGfDO0Ef93fvi8dk-fzwtLhdJooBNIlKFRY6V7SwUGSGZyzXilmTKUx4utKaaUEFA2UxZ1aogjKOGePG5oyzwtIJuup7XWhKGXTZGL3Wrq6NbiROMwo0j9BND-28-2xNaGRVBm22W1Ub1wZJOKTdQYJE9PoPunGtr-MJkSIUCyZ4V0h7SnsXgjdW7nxZKf8tMchOr4x65aBXDnpj6nLobleVKfaZX58RmPdAl97v_a_yB6GWheI</recordid><startdate>20210428</startdate><enddate>20210428</enddate><creator>Lee, Changhyoup</creator><creator>Lawrie, Benjamin</creator><creator>Pooser, Raphael</creator><creator>Lee, Kwang-Geol</creator><creator>Rockstuhl, Carsten</creator><creator>Tame, Mark</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1431-066X</orcidid><orcidid>https://orcid.org/0000-0002-5058-0248</orcidid><orcidid>https://orcid.org/0000000297954403</orcidid><orcidid>https://orcid.org/0000000258680526</orcidid><orcidid>https://orcid.org/000000022922453X</orcidid><orcidid>https://orcid.org/0000000214014230</orcidid><orcidid>https://orcid.org/000000031431066X</orcidid><orcidid>https://orcid.org/0000000250580248</orcidid></search><sort><creationdate>20210428</creationdate><title>Quantum Plasmonic Sensors</title><author>Lee, Changhyoup ; Lawrie, Benjamin ; Pooser, Raphael ; Lee, Kwang-Geol ; Rockstuhl, Carsten ; Tame, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Commercialization</topic><topic>Electromagnetic fields</topic><topic>Optics</topic><topic>OTHER INSTRUMENTATION</topic><topic>Plasmonics</topic><topic>Sensitivity</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Changhyoup</creatorcontrib><creatorcontrib>Lawrie, Benjamin</creatorcontrib><creatorcontrib>Pooser, Raphael</creatorcontrib><creatorcontrib>Lee, Kwang-Geol</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Tame, Mark</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Changhyoup</au><au>Lawrie, Benjamin</au><au>Pooser, Raphael</au><au>Lee, Kwang-Geol</au><au>Rockstuhl, Carsten</au><au>Tame, Mark</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Plasmonic Sensors</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2021-04-28</date><risdate>2021</risdate><volume>121</volume><issue>8</issue><spage>4743</spage><epage>4804</epage><pages>4743-4804</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33787252</pmid><doi>10.1021/acs.chemrev.0c01028</doi><tpages>62</tpages><orcidid>https://orcid.org/0000-0003-1431-066X</orcidid><orcidid>https://orcid.org/0000-0002-5058-0248</orcidid><orcidid>https://orcid.org/0000000297954403</orcidid><orcidid>https://orcid.org/0000000258680526</orcidid><orcidid>https://orcid.org/000000022922453X</orcidid><orcidid>https://orcid.org/0000000214014230</orcidid><orcidid>https://orcid.org/000000031431066X</orcidid><orcidid>https://orcid.org/0000000250580248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2021-04, Vol.121 (8), p.4743-4804
issn 0009-2665
1520-6890
language eng
recordid cdi_osti_scitechconnect_1783039
source American Chemical Society Journals
subjects Commercialization
Electromagnetic fields
Optics
OTHER INSTRUMENTATION
Plasmonics
Sensitivity
Sensors
title Quantum Plasmonic Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Plasmonic%20Sensors&rft.jtitle=Chemical%20reviews&rft.au=Lee,%20Changhyoup&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-04-28&rft.volume=121&rft.issue=8&rft.spage=4743&rft.epage=4804&rft.pages=4743-4804&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c01028&rft_dat=%3Cproquest_osti_%3E2523164659%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523164659&rft_id=info:pmid/33787252&rfr_iscdi=true