Quantum Plasmonic Sensors
The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design o...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2021-04, Vol.121 (8), p.4743-4804 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4804 |
---|---|
container_issue | 8 |
container_start_page | 4743 |
container_title | Chemical reviews |
container_volume | 121 |
creator | Lee, Changhyoup Lawrie, Benjamin Pooser, Raphael Lee, Kwang-Geol Rockstuhl, Carsten Tame, Mark |
description | The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research. |
doi_str_mv | 10.1021/acs.chemrev.0c01028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1783039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2523164659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gAgy9MabbiefbS9l-AUDFfU6ZGnCOtZmJq3gvzeldRdeeBVOeN73cB6ELjDMMBA8VzrM9NpU3nzNQEP8yw7QGHMCichyOERjAMgTIgQfoZMQNnHknKTHaERpmqWEkzE6f21V3bTV9GWrQuXqUk_fTB2cD6foyKptMGfDO0Ef93fvi8dk-fzwtLhdJooBNIlKFRY6V7SwUGSGZyzXilmTKUx4utKaaUEFA2UxZ1aogjKOGePG5oyzwtIJuup7XWhKGXTZGL3Wrq6NbiROMwo0j9BND-28-2xNaGRVBm22W1Ub1wZJOKTdQYJE9PoPunGtr-MJkSIUCyZ4V0h7SnsXgjdW7nxZKf8tMchOr4x65aBXDnpj6nLobleVKfaZX58RmPdAl97v_a_yB6GWheI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523164659</pqid></control><display><type>article</type><title>Quantum Plasmonic Sensors</title><source>American Chemical Society Journals</source><creator>Lee, Changhyoup ; Lawrie, Benjamin ; Pooser, Raphael ; Lee, Kwang-Geol ; Rockstuhl, Carsten ; Tame, Mark</creator><creatorcontrib>Lee, Changhyoup ; Lawrie, Benjamin ; Pooser, Raphael ; Lee, Kwang-Geol ; Rockstuhl, Carsten ; Tame, Mark ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c01028</identifier><identifier>PMID: 33787252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Commercialization ; Electromagnetic fields ; Optics ; OTHER INSTRUMENTATION ; Plasmonics ; Sensitivity ; Sensors</subject><ispartof>Chemical reviews, 2021-04, Vol.121 (8), p.4743-4804</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 28, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</citedby><cites>FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</cites><orcidid>0000-0003-1431-066X ; 0000-0002-5058-0248 ; 0000000297954403 ; 0000000258680526 ; 000000022922453X ; 0000000214014230 ; 000000031431066X ; 0000000250580248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c01028$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33787252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1783039$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Changhyoup</creatorcontrib><creatorcontrib>Lawrie, Benjamin</creatorcontrib><creatorcontrib>Pooser, Raphael</creatorcontrib><creatorcontrib>Lee, Kwang-Geol</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Tame, Mark</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Quantum Plasmonic Sensors</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.</description><subject>Commercialization</subject><subject>Electromagnetic fields</subject><subject>Optics</subject><subject>OTHER INSTRUMENTATION</subject><subject>Plasmonics</subject><subject>Sensitivity</subject><subject>Sensors</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk5_gAgy9MabbiefbS9l-AUDFfU6ZGnCOtZmJq3gvzeldRdeeBVOeN73cB6ELjDMMBA8VzrM9NpU3nzNQEP8yw7QGHMCichyOERjAMgTIgQfoZMQNnHknKTHaERpmqWEkzE6f21V3bTV9GWrQuXqUk_fTB2cD6foyKptMGfDO0Ef93fvi8dk-fzwtLhdJooBNIlKFRY6V7SwUGSGZyzXilmTKUx4utKaaUEFA2UxZ1aogjKOGePG5oyzwtIJuup7XWhKGXTZGL3Wrq6NbiROMwo0j9BND-28-2xNaGRVBm22W1Ub1wZJOKTdQYJE9PoPunGtr-MJkSIUCyZ4V0h7SnsXgjdW7nxZKf8tMchOr4x65aBXDnpj6nLobleVKfaZX58RmPdAl97v_a_yB6GWheI</recordid><startdate>20210428</startdate><enddate>20210428</enddate><creator>Lee, Changhyoup</creator><creator>Lawrie, Benjamin</creator><creator>Pooser, Raphael</creator><creator>Lee, Kwang-Geol</creator><creator>Rockstuhl, Carsten</creator><creator>Tame, Mark</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1431-066X</orcidid><orcidid>https://orcid.org/0000-0002-5058-0248</orcidid><orcidid>https://orcid.org/0000000297954403</orcidid><orcidid>https://orcid.org/0000000258680526</orcidid><orcidid>https://orcid.org/000000022922453X</orcidid><orcidid>https://orcid.org/0000000214014230</orcidid><orcidid>https://orcid.org/000000031431066X</orcidid><orcidid>https://orcid.org/0000000250580248</orcidid></search><sort><creationdate>20210428</creationdate><title>Quantum Plasmonic Sensors</title><author>Lee, Changhyoup ; Lawrie, Benjamin ; Pooser, Raphael ; Lee, Kwang-Geol ; Rockstuhl, Carsten ; Tame, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-a7a16c9a3df0d8e5849ca4fe8a1257bcc4c63640af154f6ad3451445ef9454df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Commercialization</topic><topic>Electromagnetic fields</topic><topic>Optics</topic><topic>OTHER INSTRUMENTATION</topic><topic>Plasmonics</topic><topic>Sensitivity</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Changhyoup</creatorcontrib><creatorcontrib>Lawrie, Benjamin</creatorcontrib><creatorcontrib>Pooser, Raphael</creatorcontrib><creatorcontrib>Lee, Kwang-Geol</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Tame, Mark</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Changhyoup</au><au>Lawrie, Benjamin</au><au>Pooser, Raphael</au><au>Lee, Kwang-Geol</au><au>Rockstuhl, Carsten</au><au>Tame, Mark</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Plasmonic Sensors</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2021-04-28</date><risdate>2021</risdate><volume>121</volume><issue>8</issue><spage>4743</spage><epage>4804</epage><pages>4743-4804</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33787252</pmid><doi>10.1021/acs.chemrev.0c01028</doi><tpages>62</tpages><orcidid>https://orcid.org/0000-0003-1431-066X</orcidid><orcidid>https://orcid.org/0000-0002-5058-0248</orcidid><orcidid>https://orcid.org/0000000297954403</orcidid><orcidid>https://orcid.org/0000000258680526</orcidid><orcidid>https://orcid.org/000000022922453X</orcidid><orcidid>https://orcid.org/0000000214014230</orcidid><orcidid>https://orcid.org/000000031431066X</orcidid><orcidid>https://orcid.org/0000000250580248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2021-04, Vol.121 (8), p.4743-4804 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_osti_scitechconnect_1783039 |
source | American Chemical Society Journals |
subjects | Commercialization Electromagnetic fields Optics OTHER INSTRUMENTATION Plasmonics Sensitivity Sensors |
title | Quantum Plasmonic Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Plasmonic%20Sensors&rft.jtitle=Chemical%20reviews&rft.au=Lee,%20Changhyoup&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-04-28&rft.volume=121&rft.issue=8&rft.spage=4743&rft.epage=4804&rft.pages=4743-4804&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c01028&rft_dat=%3Cproquest_osti_%3E2523164659%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523164659&rft_id=info:pmid/33787252&rfr_iscdi=true |