Scalable balanced training of conditional generative adversarial neural networks on image data

We propose a distributed approach to train deep convolutional generative adversarial neural network (DC-CGANs) models. Our method reduces the imbalance between generator and discriminator by partitioning the training data according to data labels, and enhances scalability by performing a parallel tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2021-11, Vol.77 (11), p.13358-13384
Hauptverfasser: Lupo Pasini, Massimiliano, Gabbi, Vittorio, Yin, Junqi, Perotto, Simona, Laanait, Nouamane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13384
container_issue 11
container_start_page 13358
container_title The Journal of supercomputing
container_volume 77
creator Lupo Pasini, Massimiliano
Gabbi, Vittorio
Yin, Junqi
Perotto, Simona
Laanait, Nouamane
description We propose a distributed approach to train deep convolutional generative adversarial neural network (DC-CGANs) models. Our method reduces the imbalance between generator and discriminator by partitioning the training data according to data labels, and enhances scalability by performing a parallel training where multiple generators are concurrently trained, each one of them focusing on a single data label. Performance is assessed in terms of inception score, Fréchet inception distance, and image quality on MNIST, CIFAR10, CIFAR100, and ImageNet1k datasets, showing a significant improvement in comparison to state-of-the-art techniques to training DC-CGANs. Weak scaling is attained on all the four datasets using up to 1000 processes and 2000 NVIDIA V100 GPUs on the OLCF supercomputer Summit.
doi_str_mv 10.1007/s11227-021-03808-2
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1783019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585945481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-985ac997cc1a710523bea83cd17c2cc105b69168088c38aa7bc6acebbc8654653</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AU9Bz6N5TCaZo4gvEDyoV0NPT3aNrokmWcV_b3QEb54Kmq-KriJkn7Mjzpg-zpwLoRsmeMOkYaYRG2TGlZYNa027SWasF6wxqhXbZCfnJ8ZYK7WckYdbhBUMK0eHqgHdSEsCH3xY0rigGMPoi48BVnTpgktQ_LujML67lCH5eg5unX6kfMT0nGkM1L_A0tERCuySrQWsstv71Tm5Pz-7O71srm8urk5PrhuUbVea3ijAvteIHDRnSsjBgZE4co2iHpkaup53tZhBaQD0gB2gGwY0nWo7JefkYMqNuXib0ReHj_X54LBYro1kvK_Q4QS9pvi2drnYp7hOtVq2QhnVt6o1vFJiojDFnJNb2NdUC6VPy5n9HttOY9s6tv0Z24pqkpMpVzgsXfqL_sf1BZikgmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585945481</pqid></control><display><type>article</type><title>Scalable balanced training of conditional generative adversarial neural networks on image data</title><source>SpringerLink Journals</source><creator>Lupo Pasini, Massimiliano ; Gabbi, Vittorio ; Yin, Junqi ; Perotto, Simona ; Laanait, Nouamane</creator><creatorcontrib>Lupo Pasini, Massimiliano ; Gabbi, Vittorio ; Yin, Junqi ; Perotto, Simona ; Laanait, Nouamane ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>We propose a distributed approach to train deep convolutional generative adversarial neural network (DC-CGANs) models. Our method reduces the imbalance between generator and discriminator by partitioning the training data according to data labels, and enhances scalability by performing a parallel training where multiple generators are concurrently trained, each one of them focusing on a single data label. Performance is assessed in terms of inception score, Fréchet inception distance, and image quality on MNIST, CIFAR10, CIFAR100, and ImageNet1k datasets, showing a significant improvement in comparison to state-of-the-art techniques to training DC-CGANs. Weak scaling is attained on all the four datasets using up to 1000 processes and 2000 NVIDIA V100 GPUs on the OLCF supercomputer Summit.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-021-03808-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Compilers ; Computer Science ; Computer vision ; Datasets ; Deep learning ; Generative adversarial neural networks ; Image quality ; Interpreters ; MATHEMATICS AND COMPUTING ; Neural networks ; Processor Architectures ; Programming Languages ; Supercomputing ; Training</subject><ispartof>The Journal of supercomputing, 2021-11, Vol.77 (11), p.13358-13384</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-985ac997cc1a710523bea83cd17c2cc105b69168088c38aa7bc6acebbc8654653</citedby><cites>FETCH-LOGICAL-c346t-985ac997cc1a710523bea83cd17c2cc105b69168088c38aa7bc6acebbc8654653</cites><orcidid>0000-0002-4980-6924 ; 0000000329947516 ; 0000000249806924 ; 0000000338435520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-021-03808-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-021-03808-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1783019$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lupo Pasini, Massimiliano</creatorcontrib><creatorcontrib>Gabbi, Vittorio</creatorcontrib><creatorcontrib>Yin, Junqi</creatorcontrib><creatorcontrib>Perotto, Simona</creatorcontrib><creatorcontrib>Laanait, Nouamane</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Scalable balanced training of conditional generative adversarial neural networks on image data</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>We propose a distributed approach to train deep convolutional generative adversarial neural network (DC-CGANs) models. Our method reduces the imbalance between generator and discriminator by partitioning the training data according to data labels, and enhances scalability by performing a parallel training where multiple generators are concurrently trained, each one of them focusing on a single data label. Performance is assessed in terms of inception score, Fréchet inception distance, and image quality on MNIST, CIFAR10, CIFAR100, and ImageNet1k datasets, showing a significant improvement in comparison to state-of-the-art techniques to training DC-CGANs. Weak scaling is attained on all the four datasets using up to 1000 processes and 2000 NVIDIA V100 GPUs on the OLCF supercomputer Summit.</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Generative adversarial neural networks</subject><subject>Image quality</subject><subject>Interpreters</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Neural networks</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Supercomputing</subject><subject>Training</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AU9Bz6N5TCaZo4gvEDyoV0NPT3aNrokmWcV_b3QEb54Kmq-KriJkn7Mjzpg-zpwLoRsmeMOkYaYRG2TGlZYNa027SWasF6wxqhXbZCfnJ8ZYK7WckYdbhBUMK0eHqgHdSEsCH3xY0rigGMPoi48BVnTpgktQ_LujML67lCH5eg5unX6kfMT0nGkM1L_A0tERCuySrQWsstv71Tm5Pz-7O71srm8urk5PrhuUbVea3ijAvteIHDRnSsjBgZE4co2iHpkaup53tZhBaQD0gB2gGwY0nWo7JefkYMqNuXib0ReHj_X54LBYro1kvK_Q4QS9pvi2drnYp7hOtVq2QhnVt6o1vFJiojDFnJNb2NdUC6VPy5n9HttOY9s6tv0Z24pqkpMpVzgsXfqL_sf1BZikgmQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lupo Pasini, Massimiliano</creator><creator>Gabbi, Vittorio</creator><creator>Yin, Junqi</creator><creator>Perotto, Simona</creator><creator>Laanait, Nouamane</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4980-6924</orcidid><orcidid>https://orcid.org/0000000329947516</orcidid><orcidid>https://orcid.org/0000000249806924</orcidid><orcidid>https://orcid.org/0000000338435520</orcidid></search><sort><creationdate>20211101</creationdate><title>Scalable balanced training of conditional generative adversarial neural networks on image data</title><author>Lupo Pasini, Massimiliano ; Gabbi, Vittorio ; Yin, Junqi ; Perotto, Simona ; Laanait, Nouamane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-985ac997cc1a710523bea83cd17c2cc105b69168088c38aa7bc6acebbc8654653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Generative adversarial neural networks</topic><topic>Image quality</topic><topic>Interpreters</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Neural networks</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Supercomputing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lupo Pasini, Massimiliano</creatorcontrib><creatorcontrib>Gabbi, Vittorio</creatorcontrib><creatorcontrib>Yin, Junqi</creatorcontrib><creatorcontrib>Perotto, Simona</creatorcontrib><creatorcontrib>Laanait, Nouamane</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lupo Pasini, Massimiliano</au><au>Gabbi, Vittorio</au><au>Yin, Junqi</au><au>Perotto, Simona</au><au>Laanait, Nouamane</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable balanced training of conditional generative adversarial neural networks on image data</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>77</volume><issue>11</issue><spage>13358</spage><epage>13384</epage><pages>13358-13384</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>We propose a distributed approach to train deep convolutional generative adversarial neural network (DC-CGANs) models. Our method reduces the imbalance between generator and discriminator by partitioning the training data according to data labels, and enhances scalability by performing a parallel training where multiple generators are concurrently trained, each one of them focusing on a single data label. Performance is assessed in terms of inception score, Fréchet inception distance, and image quality on MNIST, CIFAR10, CIFAR100, and ImageNet1k datasets, showing a significant improvement in comparison to state-of-the-art techniques to training DC-CGANs. Weak scaling is attained on all the four datasets using up to 1000 processes and 2000 NVIDIA V100 GPUs on the OLCF supercomputer Summit.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-021-03808-2</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4980-6924</orcidid><orcidid>https://orcid.org/0000000329947516</orcidid><orcidid>https://orcid.org/0000000249806924</orcidid><orcidid>https://orcid.org/0000000338435520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2021-11, Vol.77 (11), p.13358-13384
issn 0920-8542
1573-0484
language eng
recordid cdi_osti_scitechconnect_1783019
source SpringerLink Journals
subjects Compilers
Computer Science
Computer vision
Datasets
Deep learning
Generative adversarial neural networks
Image quality
Interpreters
MATHEMATICS AND COMPUTING
Neural networks
Processor Architectures
Programming Languages
Supercomputing
Training
title Scalable balanced training of conditional generative adversarial neural networks on image data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20balanced%20training%20of%20conditional%20generative%20adversarial%20neural%20networks%20on%20image%20data&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Lupo%20Pasini,%20Massimiliano&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2021-11-01&rft.volume=77&rft.issue=11&rft.spage=13358&rft.epage=13384&rft.pages=13358-13384&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-021-03808-2&rft_dat=%3Cproquest_osti_%3E2585945481%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585945481&rft_id=info:pmid/&rfr_iscdi=true