Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials
The incorporation of phase change materials (PCMs) in cement-based materials opens pathways for large-scale thermal energy storage with tremendous opportunities for energy saving. However, traditional use of polymer micro-encapsulated PCMs (MEPCM) in cement-based materials lead to several well-known...
Gespeichert in:
Veröffentlicht in: | Cement & concrete composites 2021-07, Vol.120 (C), p.104033, Article 104033 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 104033 |
container_title | Cement & concrete composites |
container_volume | 120 |
creator | Brooks, Adam L. Fang, Yi Shen, Zhenglai Wang, Jialai Zhou, Hongyu |
description | The incorporation of phase change materials (PCMs) in cement-based materials opens pathways for large-scale thermal energy storage with tremendous opportunities for energy saving. However, traditional use of polymer micro-encapsulated PCMs (MEPCM) in cement-based materials lead to several well-known drawbacks (e.g., detrimental to mechanical performance, lower thermal conductivity, and high costs). In this research, a novel micro-encapsulation pathway is pursued, using fly-ash cenosphere to encapsulate PCMs for high volume use in cement-based materials. A comparative study was conducted to elucidate the effects of the cenosphere encapsulated PCMs (namely CenoPCM) and its polymer micro-encapsulated counterparts on the mechanical and thermal properties of functionalized cement-based materials. In addition, a micro-mechanics-based model was developed to predict properties of cementitious materials containing MEPCM. Property trade-off analysis shows that CenoPCM has substantial potential in the development of heat-storing cement-based materials, due to its significantly improved mechanical properties, good thermal conductivity, and much lower cost than other MEPCMs. |
doi_str_mv | 10.1016/j.cemconcomp.2021.104033 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958946521001025</els_id><sourcerecordid>S0958946521001025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-690a5a147948790d3276fdc851718b9bd2e077844aa8ecd00e9b1c8ab6f8a03a3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVIIJtN3kH07o1k2ZZ0bJc0LSz00kJuYiyPbS22bCQ1sOe-eGW2tMeeBob__4b5CKGcHTjjzfP5YHG2i7fLvB5KVvK8rpgQN2THlRSF0OLtluyYrlWhq6a-Jw8xnhljTSXLHfn14qGdnB_o6IaxiCmgH9JIMxR9KlqI2NEZEgYHU6T9EmgaMcwwUfQYhguNaQkwIH13QPvpUkDc2n6Ja85hTllY488pIzq6jplH7Qg-F_5SH8ldnwc-_Zl78uPzy_fjl-L07fXr8eOpsELXqWg0gxp4JXWlpGadKGXTd1bVXHLV6rYrkUmpqgpAoe0YQ91yq6BtegVMgNiTD1fuEpMz0bqEdszqPNpkuFSl5iKH1DVkwxJjwN6swc0QLoYzsxk3Z_PPuNmMm6vxXP10rWJ-4t1h2G7k_7FzYTvRLe7_kN-C0ZIP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials</title><source>Access via ScienceDirect (Elsevier)</source><creator>Brooks, Adam L. ; Fang, Yi ; Shen, Zhenglai ; Wang, Jialai ; Zhou, Hongyu</creator><creatorcontrib>Brooks, Adam L. ; Fang, Yi ; Shen, Zhenglai ; Wang, Jialai ; Zhou, Hongyu</creatorcontrib><description>The incorporation of phase change materials (PCMs) in cement-based materials opens pathways for large-scale thermal energy storage with tremendous opportunities for energy saving. However, traditional use of polymer micro-encapsulated PCMs (MEPCM) in cement-based materials lead to several well-known drawbacks (e.g., detrimental to mechanical performance, lower thermal conductivity, and high costs). In this research, a novel micro-encapsulation pathway is pursued, using fly-ash cenosphere to encapsulate PCMs for high volume use in cement-based materials. A comparative study was conducted to elucidate the effects of the cenosphere encapsulated PCMs (namely CenoPCM) and its polymer micro-encapsulated counterparts on the mechanical and thermal properties of functionalized cement-based materials. In addition, a micro-mechanics-based model was developed to predict properties of cementitious materials containing MEPCM. Property trade-off analysis shows that CenoPCM has substantial potential in the development of heat-storing cement-based materials, due to its significantly improved mechanical properties, good thermal conductivity, and much lower cost than other MEPCMs.</description><identifier>ISSN: 0958-9465</identifier><identifier>EISSN: 1873-393X</identifier><identifier>DOI: 10.1016/j.cemconcomp.2021.104033</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Fly ash cenosphere ; Functional cementitious materials ; Microencapsulation ; Phase change materials ; Thermal energy storage</subject><ispartof>Cement & concrete composites, 2021-07, Vol.120 (C), p.104033, Article 104033</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-690a5a147948790d3276fdc851718b9bd2e077844aa8ecd00e9b1c8ab6f8a03a3</citedby><cites>FETCH-LOGICAL-c395t-690a5a147948790d3276fdc851718b9bd2e077844aa8ecd00e9b1c8ab6f8a03a3</cites><orcidid>0000-0003-2176-9305 ; 0000000321769305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cemconcomp.2021.104033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1782913$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooks, Adam L.</creatorcontrib><creatorcontrib>Fang, Yi</creatorcontrib><creatorcontrib>Shen, Zhenglai</creatorcontrib><creatorcontrib>Wang, Jialai</creatorcontrib><creatorcontrib>Zhou, Hongyu</creatorcontrib><title>Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials</title><title>Cement & concrete composites</title><description>The incorporation of phase change materials (PCMs) in cement-based materials opens pathways for large-scale thermal energy storage with tremendous opportunities for energy saving. However, traditional use of polymer micro-encapsulated PCMs (MEPCM) in cement-based materials lead to several well-known drawbacks (e.g., detrimental to mechanical performance, lower thermal conductivity, and high costs). In this research, a novel micro-encapsulation pathway is pursued, using fly-ash cenosphere to encapsulate PCMs for high volume use in cement-based materials. A comparative study was conducted to elucidate the effects of the cenosphere encapsulated PCMs (namely CenoPCM) and its polymer micro-encapsulated counterparts on the mechanical and thermal properties of functionalized cement-based materials. In addition, a micro-mechanics-based model was developed to predict properties of cementitious materials containing MEPCM. Property trade-off analysis shows that CenoPCM has substantial potential in the development of heat-storing cement-based materials, due to its significantly improved mechanical properties, good thermal conductivity, and much lower cost than other MEPCMs.</description><subject>Fly ash cenosphere</subject><subject>Functional cementitious materials</subject><subject>Microencapsulation</subject><subject>Phase change materials</subject><subject>Thermal energy storage</subject><issn>0958-9465</issn><issn>1873-393X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVIIJtN3kH07o1k2ZZ0bJc0LSz00kJuYiyPbS22bCQ1sOe-eGW2tMeeBob__4b5CKGcHTjjzfP5YHG2i7fLvB5KVvK8rpgQN2THlRSF0OLtluyYrlWhq6a-Jw8xnhljTSXLHfn14qGdnB_o6IaxiCmgH9JIMxR9KlqI2NEZEgYHU6T9EmgaMcwwUfQYhguNaQkwIH13QPvpUkDc2n6Ja85hTllY488pIzq6jplH7Qg-F_5SH8ldnwc-_Zl78uPzy_fjl-L07fXr8eOpsELXqWg0gxp4JXWlpGadKGXTd1bVXHLV6rYrkUmpqgpAoe0YQ91yq6BtegVMgNiTD1fuEpMz0bqEdszqPNpkuFSl5iKH1DVkwxJjwN6swc0QLoYzsxk3Z_PPuNmMm6vxXP10rWJ-4t1h2G7k_7FzYTvRLe7_kN-C0ZIP</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Brooks, Adam L.</creator><creator>Fang, Yi</creator><creator>Shen, Zhenglai</creator><creator>Wang, Jialai</creator><creator>Zhou, Hongyu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2176-9305</orcidid><orcidid>https://orcid.org/0000000321769305</orcidid></search><sort><creationdate>202107</creationdate><title>Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials</title><author>Brooks, Adam L. ; Fang, Yi ; Shen, Zhenglai ; Wang, Jialai ; Zhou, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-690a5a147948790d3276fdc851718b9bd2e077844aa8ecd00e9b1c8ab6f8a03a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fly ash cenosphere</topic><topic>Functional cementitious materials</topic><topic>Microencapsulation</topic><topic>Phase change materials</topic><topic>Thermal energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, Adam L.</creatorcontrib><creatorcontrib>Fang, Yi</creatorcontrib><creatorcontrib>Shen, Zhenglai</creatorcontrib><creatorcontrib>Wang, Jialai</creatorcontrib><creatorcontrib>Zhou, Hongyu</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Cement & concrete composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, Adam L.</au><au>Fang, Yi</au><au>Shen, Zhenglai</au><au>Wang, Jialai</au><au>Zhou, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials</atitle><jtitle>Cement & concrete composites</jtitle><date>2021-07</date><risdate>2021</risdate><volume>120</volume><issue>C</issue><spage>104033</spage><pages>104033-</pages><artnum>104033</artnum><issn>0958-9465</issn><eissn>1873-393X</eissn><abstract>The incorporation of phase change materials (PCMs) in cement-based materials opens pathways for large-scale thermal energy storage with tremendous opportunities for energy saving. However, traditional use of polymer micro-encapsulated PCMs (MEPCM) in cement-based materials lead to several well-known drawbacks (e.g., detrimental to mechanical performance, lower thermal conductivity, and high costs). In this research, a novel micro-encapsulation pathway is pursued, using fly-ash cenosphere to encapsulate PCMs for high volume use in cement-based materials. A comparative study was conducted to elucidate the effects of the cenosphere encapsulated PCMs (namely CenoPCM) and its polymer micro-encapsulated counterparts on the mechanical and thermal properties of functionalized cement-based materials. In addition, a micro-mechanics-based model was developed to predict properties of cementitious materials containing MEPCM. Property trade-off analysis shows that CenoPCM has substantial potential in the development of heat-storing cement-based materials, due to its significantly improved mechanical properties, good thermal conductivity, and much lower cost than other MEPCMs.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconcomp.2021.104033</doi><orcidid>https://orcid.org/0000-0003-2176-9305</orcidid><orcidid>https://orcid.org/0000000321769305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-9465 |
ispartof | Cement & concrete composites, 2021-07, Vol.120 (C), p.104033, Article 104033 |
issn | 0958-9465 1873-393X |
language | eng |
recordid | cdi_osti_scitechconnect_1782913 |
source | Access via ScienceDirect (Elsevier) |
subjects | Fly ash cenosphere Functional cementitious materials Microencapsulation Phase change materials Thermal energy storage |
title | Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20high-strength%20cement-based%20materials%20for%20thermal%20energy%20storage%20via%20fly-ash%20cenosphere%20encapsulated%20phase%20change%20materials&rft.jtitle=Cement%20&%20concrete%20composites&rft.au=Brooks,%20Adam%20L.&rft.date=2021-07&rft.volume=120&rft.issue=C&rft.spage=104033&rft.pages=104033-&rft.artnum=104033&rft.issn=0958-9465&rft.eissn=1873-393X&rft_id=info:doi/10.1016/j.cemconcomp.2021.104033&rft_dat=%3Celsevier_osti_%3ES0958946521001025%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0958946521001025&rfr_iscdi=true |