Interference of chiral Andreev edge states
The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-08, Vol.16 (8), p.862-867 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | 8 |
container_start_page | 862 |
container_title | Nature physics |
container_volume | 16 |
creator | Zhao, Lingfei Arnault, Ethan G. Bondarev, Alexey Seredinski, Andrew Larson, Trevyn F. Q. Draelos, Anne W. Li, Hengming Watanabe, Kenji Taniguchi, Takashi Amet, François Baranger, Harold U. Finkelstein, Gleb |
description | The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the
s
-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.
The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path. |
doi_str_mv | 10.1038/s41567-020-0898-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430244390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2gOyGa99xZluILCm50HabJTTulZmqSCv57p4zoytU9i-8cLh8hl5zdcibhLiuuTU2ZYJRBA1QfkQmvlaZCAT_-zbU8JWc5bxhTwnA5ITfPsWAKmDA6rPpQuXWX2m01iz4hflboV1jl0hbM5-QktNuMFz93St4e7l_nT3Tx8vg8ny2ok2AKDWqpQTEv0XHkDXjHIbAQOArhwC89sGZZKwVGe41SGZCNMI1iHMB4ZeSUXI27fS6dza4r6NaujxFdsbwGAaYeoOsR2qX-Y4-52E2_T3H4ywolmVBKNmyg-Ei51OecMNhd6t7b9GU5swdvdvRmB2_24M3qoSPGTh7YuML0t_x_6RvLdm0e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430244390</pqid></control><display><type>article</type><title>Interference of chiral Andreev edge states</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Zhao, Lingfei ; Arnault, Ethan G. ; Bondarev, Alexey ; Seredinski, Andrew ; Larson, Trevyn F. Q. ; Draelos, Anne W. ; Li, Hengming ; Watanabe, Kenji ; Taniguchi, Takashi ; Amet, François ; Baranger, Harold U. ; Finkelstein, Gleb</creator><creatorcontrib>Zhao, Lingfei ; Arnault, Ethan G. ; Bondarev, Alexey ; Seredinski, Andrew ; Larson, Trevyn F. Q. ; Draelos, Anne W. ; Li, Hengming ; Watanabe, Kenji ; Taniguchi, Takashi ; Amet, François ; Baranger, Harold U. ; Finkelstein, Gleb ; Advanced Materials Laboratory, NIMS, Tsukuba (Japan) ; Appalachian State University, Boone, NC (United States) ; Duke Univ., Durham, NC (United States)</creatorcontrib><description>The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the
s
-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.
The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0898-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/2794 ; Atomic ; Classical and Continuum Physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Complex Systems ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrons ; Excitation ; Fermions ; Interference ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Theoretical ; Topology</subject><ispartof>Nature physics, 2020-08, Vol.16 (8), p.862-867</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</citedby><cites>FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</cites><orcidid>0000-0001-7863-9726 ; 0000-0003-0013-9902 ; 0000-0002-0883-0741 ; 0000-0002-1458-2756 ; 0000-0003-3701-8119 ; 0000-0002-9311-7624 ; 0000000300139902 ; 0000000337018119 ; 0000000293117624 ; 0000000208830741 ; 0000000214582756 ; 0000000178639726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782867$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lingfei</creatorcontrib><creatorcontrib>Arnault, Ethan G.</creatorcontrib><creatorcontrib>Bondarev, Alexey</creatorcontrib><creatorcontrib>Seredinski, Andrew</creatorcontrib><creatorcontrib>Larson, Trevyn F. Q.</creatorcontrib><creatorcontrib>Draelos, Anne W.</creatorcontrib><creatorcontrib>Li, Hengming</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Amet, François</creatorcontrib><creatorcontrib>Baranger, Harold U.</creatorcontrib><creatorcontrib>Finkelstein, Gleb</creatorcontrib><creatorcontrib>Advanced Materials Laboratory, NIMS, Tsukuba (Japan)</creatorcontrib><creatorcontrib>Appalachian State University, Boone, NC (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><title>Interference of chiral Andreev edge states</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the
s
-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.
The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path.</description><subject>639/766/119/1003</subject><subject>639/766/119/2794</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrons</subject><subject>Excitation</subject><subject>Fermions</subject><subject>Interference</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2gOyGa99xZluILCm50HabJTTulZmqSCv57p4zoytU9i-8cLh8hl5zdcibhLiuuTU2ZYJRBA1QfkQmvlaZCAT_-zbU8JWc5bxhTwnA5ITfPsWAKmDA6rPpQuXWX2m01iz4hflboV1jl0hbM5-QktNuMFz93St4e7l_nT3Tx8vg8ny2ok2AKDWqpQTEv0XHkDXjHIbAQOArhwC89sGZZKwVGe41SGZCNMI1iHMB4ZeSUXI27fS6dza4r6NaujxFdsbwGAaYeoOsR2qX-Y4-52E2_T3H4ywolmVBKNmyg-Ei51OecMNhd6t7b9GU5swdvdvRmB2_24M3qoSPGTh7YuML0t_x_6RvLdm0e</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zhao, Lingfei</creator><creator>Arnault, Ethan G.</creator><creator>Bondarev, Alexey</creator><creator>Seredinski, Andrew</creator><creator>Larson, Trevyn F. Q.</creator><creator>Draelos, Anne W.</creator><creator>Li, Hengming</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Amet, François</creator><creator>Baranger, Harold U.</creator><creator>Finkelstein, Gleb</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7863-9726</orcidid><orcidid>https://orcid.org/0000-0003-0013-9902</orcidid><orcidid>https://orcid.org/0000-0002-0883-0741</orcidid><orcidid>https://orcid.org/0000-0002-1458-2756</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9311-7624</orcidid><orcidid>https://orcid.org/0000000300139902</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000293117624</orcidid><orcidid>https://orcid.org/0000000208830741</orcidid><orcidid>https://orcid.org/0000000214582756</orcidid><orcidid>https://orcid.org/0000000178639726</orcidid></search><sort><creationdate>20200801</creationdate><title>Interference of chiral Andreev edge states</title><author>Zhao, Lingfei ; Arnault, Ethan G. ; Bondarev, Alexey ; Seredinski, Andrew ; Larson, Trevyn F. Q. ; Draelos, Anne W. ; Li, Hengming ; Watanabe, Kenji ; Taniguchi, Takashi ; Amet, François ; Baranger, Harold U. ; Finkelstein, Gleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/2794</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrons</topic><topic>Excitation</topic><topic>Fermions</topic><topic>Interference</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lingfei</creatorcontrib><creatorcontrib>Arnault, Ethan G.</creatorcontrib><creatorcontrib>Bondarev, Alexey</creatorcontrib><creatorcontrib>Seredinski, Andrew</creatorcontrib><creatorcontrib>Larson, Trevyn F. Q.</creatorcontrib><creatorcontrib>Draelos, Anne W.</creatorcontrib><creatorcontrib>Li, Hengming</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Amet, François</creatorcontrib><creatorcontrib>Baranger, Harold U.</creatorcontrib><creatorcontrib>Finkelstein, Gleb</creatorcontrib><creatorcontrib>Advanced Materials Laboratory, NIMS, Tsukuba (Japan)</creatorcontrib><creatorcontrib>Appalachian State University, Boone, NC (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lingfei</au><au>Arnault, Ethan G.</au><au>Bondarev, Alexey</au><au>Seredinski, Andrew</au><au>Larson, Trevyn F. Q.</au><au>Draelos, Anne W.</au><au>Li, Hengming</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Amet, François</au><au>Baranger, Harold U.</au><au>Finkelstein, Gleb</au><aucorp>Advanced Materials Laboratory, NIMS, Tsukuba (Japan)</aucorp><aucorp>Appalachian State University, Boone, NC (United States)</aucorp><aucorp>Duke Univ., Durham, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interference of chiral Andreev edge states</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>862</spage><epage>867</epage><pages>862-867</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the
s
-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.
The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0898-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7863-9726</orcidid><orcidid>https://orcid.org/0000-0003-0013-9902</orcidid><orcidid>https://orcid.org/0000-0002-0883-0741</orcidid><orcidid>https://orcid.org/0000-0002-1458-2756</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9311-7624</orcidid><orcidid>https://orcid.org/0000000300139902</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000293117624</orcidid><orcidid>https://orcid.org/0000000208830741</orcidid><orcidid>https://orcid.org/0000000214582756</orcidid><orcidid>https://orcid.org/0000000178639726</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-08, Vol.16 (8), p.862-867 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_1782867 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/766/119/1003 639/766/119/2794 Atomic Classical and Continuum Physics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Complex Systems Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electrons Excitation Fermions Interference Magnetic fields Mathematical and Computational Physics Molecular NANOSCIENCE AND NANOTECHNOLOGY Optical and Plasma Physics Physics Physics and Astronomy Theoretical Topology |
title | Interference of chiral Andreev edge states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interference%20of%20chiral%20Andreev%20edge%20states&rft.jtitle=Nature%20physics&rft.au=Zhao,%20Lingfei&rft.aucorp=Advanced%20Materials%20Laboratory,%20NIMS,%20Tsukuba%20(Japan)&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=862&rft.epage=867&rft.pages=862-867&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0898-5&rft_dat=%3Cproquest_osti_%3E2430244390%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430244390&rft_id=info:pmid/&rfr_iscdi=true |