Interference of chiral Andreev edge states

The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-08, Vol.16 (8), p.862-867
Hauptverfasser: Zhao, Lingfei, Arnault, Ethan G., Bondarev, Alexey, Seredinski, Andrew, Larson, Trevyn F. Q., Draelos, Anne W., Li, Hengming, Watanabe, Kenji, Taniguchi, Takashi, Amet, François, Baranger, Harold U., Finkelstein, Gleb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 867
container_issue 8
container_start_page 862
container_title Nature physics
container_volume 16
creator Zhao, Lingfei
Arnault, Ethan G.
Bondarev, Alexey
Seredinski, Andrew
Larson, Trevyn F. Q.
Draelos, Anne W.
Li, Hengming
Watanabe, Kenji
Taniguchi, Takashi
Amet, François
Baranger, Harold U.
Finkelstein, Gleb
description The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s -wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation. The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path.
doi_str_mv 10.1038/s41567-020-0898-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430244390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2gOyGa99xZluILCm50HabJTTulZmqSCv57p4zoytU9i-8cLh8hl5zdcibhLiuuTU2ZYJRBA1QfkQmvlaZCAT_-zbU8JWc5bxhTwnA5ITfPsWAKmDA6rPpQuXWX2m01iz4hflboV1jl0hbM5-QktNuMFz93St4e7l_nT3Tx8vg8ny2ok2AKDWqpQTEv0XHkDXjHIbAQOArhwC89sGZZKwVGe41SGZCNMI1iHMB4ZeSUXI27fS6dza4r6NaujxFdsbwGAaYeoOsR2qX-Y4-52E2_T3H4ywolmVBKNmyg-Ei51OecMNhd6t7b9GU5swdvdvRmB2_24M3qoSPGTh7YuML0t_x_6RvLdm0e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430244390</pqid></control><display><type>article</type><title>Interference of chiral Andreev edge states</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Zhao, Lingfei ; Arnault, Ethan G. ; Bondarev, Alexey ; Seredinski, Andrew ; Larson, Trevyn F. Q. ; Draelos, Anne W. ; Li, Hengming ; Watanabe, Kenji ; Taniguchi, Takashi ; Amet, François ; Baranger, Harold U. ; Finkelstein, Gleb</creator><creatorcontrib>Zhao, Lingfei ; Arnault, Ethan G. ; Bondarev, Alexey ; Seredinski, Andrew ; Larson, Trevyn F. Q. ; Draelos, Anne W. ; Li, Hengming ; Watanabe, Kenji ; Taniguchi, Takashi ; Amet, François ; Baranger, Harold U. ; Finkelstein, Gleb ; Advanced Materials Laboratory, NIMS, Tsukuba (Japan) ; Appalachian State University, Boone, NC (United States) ; Duke Univ., Durham, NC (United States)</creatorcontrib><description>The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s -wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation. The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0898-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/2794 ; Atomic ; Classical and Continuum Physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Complex Systems ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrons ; Excitation ; Fermions ; Interference ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Theoretical ; Topology</subject><ispartof>Nature physics, 2020-08, Vol.16 (8), p.862-867</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</citedby><cites>FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</cites><orcidid>0000-0001-7863-9726 ; 0000-0003-0013-9902 ; 0000-0002-0883-0741 ; 0000-0002-1458-2756 ; 0000-0003-3701-8119 ; 0000-0002-9311-7624 ; 0000000300139902 ; 0000000337018119 ; 0000000293117624 ; 0000000208830741 ; 0000000214582756 ; 0000000178639726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782867$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lingfei</creatorcontrib><creatorcontrib>Arnault, Ethan G.</creatorcontrib><creatorcontrib>Bondarev, Alexey</creatorcontrib><creatorcontrib>Seredinski, Andrew</creatorcontrib><creatorcontrib>Larson, Trevyn F. Q.</creatorcontrib><creatorcontrib>Draelos, Anne W.</creatorcontrib><creatorcontrib>Li, Hengming</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Amet, François</creatorcontrib><creatorcontrib>Baranger, Harold U.</creatorcontrib><creatorcontrib>Finkelstein, Gleb</creatorcontrib><creatorcontrib>Advanced Materials Laboratory, NIMS, Tsukuba (Japan)</creatorcontrib><creatorcontrib>Appalachian State University, Boone, NC (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><title>Interference of chiral Andreev edge states</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s -wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation. The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path.</description><subject>639/766/119/1003</subject><subject>639/766/119/2794</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrons</subject><subject>Excitation</subject><subject>Fermions</subject><subject>Interference</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2gOyGa99xZluILCm50HabJTTulZmqSCv57p4zoytU9i-8cLh8hl5zdcibhLiuuTU2ZYJRBA1QfkQmvlaZCAT_-zbU8JWc5bxhTwnA5ITfPsWAKmDA6rPpQuXWX2m01iz4hflboV1jl0hbM5-QktNuMFz93St4e7l_nT3Tx8vg8ny2ok2AKDWqpQTEv0XHkDXjHIbAQOArhwC89sGZZKwVGe41SGZCNMI1iHMB4ZeSUXI27fS6dza4r6NaujxFdsbwGAaYeoOsR2qX-Y4-52E2_T3H4ywolmVBKNmyg-Ei51OecMNhd6t7b9GU5swdvdvRmB2_24M3qoSPGTh7YuML0t_x_6RvLdm0e</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zhao, Lingfei</creator><creator>Arnault, Ethan G.</creator><creator>Bondarev, Alexey</creator><creator>Seredinski, Andrew</creator><creator>Larson, Trevyn F. Q.</creator><creator>Draelos, Anne W.</creator><creator>Li, Hengming</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Amet, François</creator><creator>Baranger, Harold U.</creator><creator>Finkelstein, Gleb</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7863-9726</orcidid><orcidid>https://orcid.org/0000-0003-0013-9902</orcidid><orcidid>https://orcid.org/0000-0002-0883-0741</orcidid><orcidid>https://orcid.org/0000-0002-1458-2756</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9311-7624</orcidid><orcidid>https://orcid.org/0000000300139902</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000293117624</orcidid><orcidid>https://orcid.org/0000000208830741</orcidid><orcidid>https://orcid.org/0000000214582756</orcidid><orcidid>https://orcid.org/0000000178639726</orcidid></search><sort><creationdate>20200801</creationdate><title>Interference of chiral Andreev edge states</title><author>Zhao, Lingfei ; Arnault, Ethan G. ; Bondarev, Alexey ; Seredinski, Andrew ; Larson, Trevyn F. Q. ; Draelos, Anne W. ; Li, Hengming ; Watanabe, Kenji ; Taniguchi, Takashi ; Amet, François ; Baranger, Harold U. ; Finkelstein, Gleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-f4b5840d3ec1e198dc18f0ff1e22c8dbd809b744865d5e346839269401886d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/2794</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrons</topic><topic>Excitation</topic><topic>Fermions</topic><topic>Interference</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lingfei</creatorcontrib><creatorcontrib>Arnault, Ethan G.</creatorcontrib><creatorcontrib>Bondarev, Alexey</creatorcontrib><creatorcontrib>Seredinski, Andrew</creatorcontrib><creatorcontrib>Larson, Trevyn F. Q.</creatorcontrib><creatorcontrib>Draelos, Anne W.</creatorcontrib><creatorcontrib>Li, Hengming</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Amet, François</creatorcontrib><creatorcontrib>Baranger, Harold U.</creatorcontrib><creatorcontrib>Finkelstein, Gleb</creatorcontrib><creatorcontrib>Advanced Materials Laboratory, NIMS, Tsukuba (Japan)</creatorcontrib><creatorcontrib>Appalachian State University, Boone, NC (United States)</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lingfei</au><au>Arnault, Ethan G.</au><au>Bondarev, Alexey</au><au>Seredinski, Andrew</au><au>Larson, Trevyn F. Q.</au><au>Draelos, Anne W.</au><au>Li, Hengming</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Amet, François</au><au>Baranger, Harold U.</au><au>Finkelstein, Gleb</au><aucorp>Advanced Materials Laboratory, NIMS, Tsukuba (Japan)</aucorp><aucorp>Appalachian State University, Boone, NC (United States)</aucorp><aucorp>Duke Univ., Durham, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interference of chiral Andreev edge states</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>862</spage><epage>867</epage><pages>862-867</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s -wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation. The interface between a quantum Hall state and a superconductor hosts topological modes. Here, interference between two such modes turns an electron into either a hole or an electron depending on the phase difference along the interference path.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0898-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7863-9726</orcidid><orcidid>https://orcid.org/0000-0003-0013-9902</orcidid><orcidid>https://orcid.org/0000-0002-0883-0741</orcidid><orcidid>https://orcid.org/0000-0002-1458-2756</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9311-7624</orcidid><orcidid>https://orcid.org/0000000300139902</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000293117624</orcidid><orcidid>https://orcid.org/0000000208830741</orcidid><orcidid>https://orcid.org/0000000214582756</orcidid><orcidid>https://orcid.org/0000000178639726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-08, Vol.16 (8), p.862-867
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1782867
source Nature; Alma/SFX Local Collection
subjects 639/766/119/1003
639/766/119/2794
Atomic
Classical and Continuum Physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Complex Systems
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Electrons
Excitation
Fermions
Interference
Magnetic fields
Mathematical and Computational Physics
Molecular
NANOSCIENCE AND NANOTECHNOLOGY
Optical and Plasma Physics
Physics
Physics and Astronomy
Theoretical
Topology
title Interference of chiral Andreev edge states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interference%20of%20chiral%20Andreev%20edge%20states&rft.jtitle=Nature%20physics&rft.au=Zhao,%20Lingfei&rft.aucorp=Advanced%20Materials%20Laboratory,%20NIMS,%20Tsukuba%20(Japan)&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=862&rft.epage=867&rft.pages=862-867&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0898-5&rft_dat=%3Cproquest_osti_%3E2430244390%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430244390&rft_id=info:pmid/&rfr_iscdi=true