Electronic properties of the bulk and surface states of Fe1+yTe1−xSex
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe 0.55 Se 0.45 . However, the topological features and superconducting properties are not observed uniformly across...
Gespeichert in:
Veröffentlicht in: | Nature materials 2021-09, Vol.20 (9), p.1221-1227 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1227 |
---|---|
container_issue | 9 |
container_start_page | 1221 |
container_title | Nature materials |
container_volume | 20 |
creator | Li, Yangmu Zaki, Nader Garlea, Vasile O. Savici, Andrei T. Fobes, David Xu, Zhijun Camino, Fernando Petrovic, Cedomir Gu, Genda Johnson, Peter D. Tranquada, John M. Zaliznyak, Igor A. |
description | The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe
0.55
Se
0.45
. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe
1+
y
Te
1−
x
Se
x
. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe
0.55
Se
0.45
is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
The compositional dependence of magnetic, superconducting and topological surface states on an iron-based superconductor is reported. |
doi_str_mv | 10.1038/s41563-021-00984-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564324716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d56cf6663033a7212ece1af67ec90a006d6719cb9fbaeae51aa145f0d9ab4383</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQh4MoWKsv4CnoRZDozv5NjiJtFQoe7H3Zbic2NU3q7gbaN_DsI_okrqYgePA0A_P9Bn5fkpwDuQHC8lvPQUiWEQoZIUXOM3WQDIArmXEpyeF-B6D0ODnxfkUiKYQcJJNRjTa4tqlsunHtBl2o0KdtmYYlpvOufk1Ns0h950pjMfXBhP48RrjezRA-3z-2z7g9TY5KU3s8289hMhuPZvcP2fRp8nh_N80sU0XIFkLaUkrJCGNGUaBoEUwpFdqCGELkQioo7Lwo5wYNCjAGuCjJojBzznI2TC76t60Plfa2CmiXtm2aWEKDyqkQLEJXPRQLvXXog15X3mJdmwbbzmsqIBdcgoCIXv5BV23nmtggUpIzyhXISNGesq713mGpN65aG7fTQPS3f93719Gq_vGvVQyxPuQj3Lyg-339T-oL01KHfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564324716</pqid></control><display><type>article</type><title>Electronic properties of the bulk and surface states of Fe1+yTe1−xSex</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Yangmu ; Zaki, Nader ; Garlea, Vasile O. ; Savici, Andrei T. ; Fobes, David ; Xu, Zhijun ; Camino, Fernando ; Petrovic, Cedomir ; Gu, Genda ; Johnson, Peter D. ; Tranquada, John M. ; Zaliznyak, Igor A.</creator><creatorcontrib>Li, Yangmu ; Zaki, Nader ; Garlea, Vasile O. ; Savici, Andrei T. ; Fobes, David ; Xu, Zhijun ; Camino, Fernando ; Petrovic, Cedomir ; Gu, Genda ; Johnson, Peter D. ; Tranquada, John M. ; Zaliznyak, Igor A. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe
0.55
Se
0.45
. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe
1+
y
Te
1−
x
Se
x
. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe
0.55
Se
0.45
is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
The compositional dependence of magnetic, superconducting and topological surface states on an iron-based superconductor is reported.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00984-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/301/119/2792/4129 ; 639/301/119/995 ; Antiferromagnetism ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electron states ; electronic properties and materials ; Inhomogeneity ; Iron ; Laboratories ; Materials Science ; Nanotechnology ; Neutron scattering ; Optical and Electronic Materials ; Phase diagrams ; Photoelectric emission ; Quantum computing ; Single crystals ; Spectrum analysis ; superconducting properties and materials ; Superconductivity ; topological defects ; Topology ; Vortices</subject><ispartof>Nature materials, 2021-09, Vol.20 (9), p.1221-1227</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d56cf6663033a7212ece1af67ec90a006d6719cb9fbaeae51aa145f0d9ab4383</citedby><cites>FETCH-LOGICAL-c379t-d56cf6663033a7212ece1af67ec90a006d6719cb9fbaeae51aa145f0d9ab4383</cites><orcidid>0000-0001-8252-2061 ; 0000-0002-8548-7924 ; 0000-0003-0886-2919 ; 0000-0001-5127-8967 ; 0000-0001-6063-1881 ; 0000-0003-4984-8857 ; 0000000253227271 ; 0000000308862919 ; 0000000151278967 ; 0000000285487924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00984-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00984-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782553$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yangmu</creatorcontrib><creatorcontrib>Zaki, Nader</creatorcontrib><creatorcontrib>Garlea, Vasile O.</creatorcontrib><creatorcontrib>Savici, Andrei T.</creatorcontrib><creatorcontrib>Fobes, David</creatorcontrib><creatorcontrib>Xu, Zhijun</creatorcontrib><creatorcontrib>Camino, Fernando</creatorcontrib><creatorcontrib>Petrovic, Cedomir</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Johnson, Peter D.</creatorcontrib><creatorcontrib>Tranquada, John M.</creatorcontrib><creatorcontrib>Zaliznyak, Igor A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Electronic properties of the bulk and surface states of Fe1+yTe1−xSex</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe
0.55
Se
0.45
. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe
1+
y
Te
1−
x
Se
x
. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe
0.55
Se
0.45
is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
The compositional dependence of magnetic, superconducting and topological surface states on an iron-based superconductor is reported.</description><subject>639/301/119/1003</subject><subject>639/301/119/2792/4129</subject><subject>639/301/119/995</subject><subject>Antiferromagnetism</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electron states</subject><subject>electronic properties and materials</subject><subject>Inhomogeneity</subject><subject>Iron</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Neutron scattering</subject><subject>Optical and Electronic Materials</subject><subject>Phase diagrams</subject><subject>Photoelectric emission</subject><subject>Quantum computing</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>superconducting properties and materials</subject><subject>Superconductivity</subject><subject>topological defects</subject><subject>Topology</subject><subject>Vortices</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9Kw0AQh4MoWKsv4CnoRZDozv5NjiJtFQoe7H3Zbic2NU3q7gbaN_DsI_okrqYgePA0A_P9Bn5fkpwDuQHC8lvPQUiWEQoZIUXOM3WQDIArmXEpyeF-B6D0ODnxfkUiKYQcJJNRjTa4tqlsunHtBl2o0KdtmYYlpvOufk1Ns0h950pjMfXBhP48RrjezRA-3z-2z7g9TY5KU3s8289hMhuPZvcP2fRp8nh_N80sU0XIFkLaUkrJCGNGUaBoEUwpFdqCGELkQioo7Lwo5wYNCjAGuCjJojBzznI2TC76t60Plfa2CmiXtm2aWEKDyqkQLEJXPRQLvXXog15X3mJdmwbbzmsqIBdcgoCIXv5BV23nmtggUpIzyhXISNGesq713mGpN65aG7fTQPS3f93719Gq_vGvVQyxPuQj3Lyg-339T-oL01KHfA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Yangmu</creator><creator>Zaki, Nader</creator><creator>Garlea, Vasile O.</creator><creator>Savici, Andrei T.</creator><creator>Fobes, David</creator><creator>Xu, Zhijun</creator><creator>Camino, Fernando</creator><creator>Petrovic, Cedomir</creator><creator>Gu, Genda</creator><creator>Johnson, Peter D.</creator><creator>Tranquada, John M.</creator><creator>Zaliznyak, Igor A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8252-2061</orcidid><orcidid>https://orcid.org/0000-0002-8548-7924</orcidid><orcidid>https://orcid.org/0000-0003-0886-2919</orcidid><orcidid>https://orcid.org/0000-0001-5127-8967</orcidid><orcidid>https://orcid.org/0000-0001-6063-1881</orcidid><orcidid>https://orcid.org/0000-0003-4984-8857</orcidid><orcidid>https://orcid.org/0000000253227271</orcidid><orcidid>https://orcid.org/0000000308862919</orcidid><orcidid>https://orcid.org/0000000151278967</orcidid><orcidid>https://orcid.org/0000000285487924</orcidid></search><sort><creationdate>20210901</creationdate><title>Electronic properties of the bulk and surface states of Fe1+yTe1−xSex</title><author>Li, Yangmu ; Zaki, Nader ; Garlea, Vasile O. ; Savici, Andrei T. ; Fobes, David ; Xu, Zhijun ; Camino, Fernando ; Petrovic, Cedomir ; Gu, Genda ; Johnson, Peter D. ; Tranquada, John M. ; Zaliznyak, Igor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d56cf6663033a7212ece1af67ec90a006d6719cb9fbaeae51aa145f0d9ab4383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/119/1003</topic><topic>639/301/119/2792/4129</topic><topic>639/301/119/995</topic><topic>Antiferromagnetism</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electron states</topic><topic>electronic properties and materials</topic><topic>Inhomogeneity</topic><topic>Iron</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Neutron scattering</topic><topic>Optical and Electronic Materials</topic><topic>Phase diagrams</topic><topic>Photoelectric emission</topic><topic>Quantum computing</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>superconducting properties and materials</topic><topic>Superconductivity</topic><topic>topological defects</topic><topic>Topology</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yangmu</creatorcontrib><creatorcontrib>Zaki, Nader</creatorcontrib><creatorcontrib>Garlea, Vasile O.</creatorcontrib><creatorcontrib>Savici, Andrei T.</creatorcontrib><creatorcontrib>Fobes, David</creatorcontrib><creatorcontrib>Xu, Zhijun</creatorcontrib><creatorcontrib>Camino, Fernando</creatorcontrib><creatorcontrib>Petrovic, Cedomir</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Johnson, Peter D.</creatorcontrib><creatorcontrib>Tranquada, John M.</creatorcontrib><creatorcontrib>Zaliznyak, Igor A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yangmu</au><au>Zaki, Nader</au><au>Garlea, Vasile O.</au><au>Savici, Andrei T.</au><au>Fobes, David</au><au>Xu, Zhijun</au><au>Camino, Fernando</au><au>Petrovic, Cedomir</au><au>Gu, Genda</au><au>Johnson, Peter D.</au><au>Tranquada, John M.</au><au>Zaliznyak, Igor A.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic properties of the bulk and surface states of Fe1+yTe1−xSex</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>20</volume><issue>9</issue><spage>1221</spage><epage>1227</epage><pages>1221-1227</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe
0.55
Se
0.45
. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe
1+
y
Te
1−
x
Se
x
. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe
0.55
Se
0.45
is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
The compositional dependence of magnetic, superconducting and topological surface states on an iron-based superconductor is reported.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-021-00984-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8252-2061</orcidid><orcidid>https://orcid.org/0000-0002-8548-7924</orcidid><orcidid>https://orcid.org/0000-0003-0886-2919</orcidid><orcidid>https://orcid.org/0000-0001-5127-8967</orcidid><orcidid>https://orcid.org/0000-0001-6063-1881</orcidid><orcidid>https://orcid.org/0000-0003-4984-8857</orcidid><orcidid>https://orcid.org/0000000253227271</orcidid><orcidid>https://orcid.org/0000000308862919</orcidid><orcidid>https://orcid.org/0000000151278967</orcidid><orcidid>https://orcid.org/0000000285487924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2021-09, Vol.20 (9), p.1221-1227 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1782553 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301/119/1003 639/301/119/2792/4129 639/301/119/995 Antiferromagnetism Biomaterials Chemistry and Materials Science Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electron states electronic properties and materials Inhomogeneity Iron Laboratories Materials Science Nanotechnology Neutron scattering Optical and Electronic Materials Phase diagrams Photoelectric emission Quantum computing Single crystals Spectrum analysis superconducting properties and materials Superconductivity topological defects Topology Vortices |
title | Electronic properties of the bulk and surface states of Fe1+yTe1−xSex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20properties%20of%20the%20bulk%20and%20surface%20states%20of%20Fe1+yTe1%E2%88%92xSex&rft.jtitle=Nature%20materials&rft.au=Li,%20Yangmu&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-09-01&rft.volume=20&rft.issue=9&rft.spage=1221&rft.epage=1227&rft.pages=1221-1227&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00984-7&rft_dat=%3Cproquest_osti_%3E2564324716%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564324716&rft_id=info:pmid/&rfr_iscdi=true |