Surface-Induced Coacervation Facilitates Localized Precipitation of Mineral Precursors from Dilute Solutions

Many organisms orchestrate the controlled precipitation of minerals. This physiological process takes place at ambient conditions, using soluble ions as building blocks. A widespread strategy for such crystallization processes is using a multistep route, where the initial phase is metastable and gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-05, Vol.33 (10), p.3534-3542
Hauptverfasser: Krounbi, Leilah, Hedderick, Konrad, Eyal, Zohar, Aram, Lior, Shimoni, Eyal, Estroff, Lara A, Gal, Assaf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3542
container_issue 10
container_start_page 3534
container_title Chemistry of materials
container_volume 33
creator Krounbi, Leilah
Hedderick, Konrad
Eyal, Zohar
Aram, Lior
Shimoni, Eyal
Estroff, Lara A
Gal, Assaf
description Many organisms orchestrate the controlled precipitation of minerals. This physiological process takes place at ambient conditions, using soluble ions as building blocks. A widespread strategy for such crystallization processes is using a multistep route, where the initial phase is metastable and gradually transforms into the mature mineral phase. Even though the maturation of these intermediate phases has been intensively studied, it remains unclear how the initial, far from equilibrium phase can form within the cellular context. A model system for controlled biomineralization is the production of coccoliths by marine microalgae. Coccoliths are calcium carbonate crystalline arrays that form within the intracellular environment, at very low calcium concentrations. Here, we used coccolith-derived and synthetic polymers to study, in vitro, the chemical interactions between calcium ions and organic macromolecules that precede coccolith formation. We used in situ analyses, including state-of-the-art cryo-electron tomography and liquid-cell atomic force microscopy, to study the interactions in bulk solution and on organic surfaces simultaneously. The results unveil a chemical process in which a functional surface induces the precipitation of a polymer–Ca dense phase, or a coacervate, at chemical conditions where precipitation in solution is kinetically inhibited. This strategy demonstrates how organisms can form dense Ca-rich phases from the submillimolar concentration of calcium within organelles. This Ca-rich phase can then transform into a mineral precursor in a subsequent step, without posing challenges to cellular homeostasis.
doi_str_mv 10.1021/acs.chemmater.0c04668
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c827526474</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-3b051dae6fc9f0c92262b5d566be646d87ffa52f4666b461df5491cf906f6efd3</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_QQi-dyZZk7aPMt0cTBSmzyG9TVhG24wkFfTXm7rhq0-He-93DtyD0C0lM0oYvVcQZrDTXaei9jMCJBeiPEMTyhnJOCHsHE1IWRVZXnBxia5C2BNCk7WcoHY7eKNAZ-u-GUA3eOHS5D9VtK7HSwW2tTHlBrxxoFr7nZA3r8EexvXIOINfbK-9an8Pgw_OB2y86_CjbYeo8dYlSWi4RhdGtUHfnHSKPpZP74vnbPO6Wi8eNpmaiypm85pw2igtDFSGQMWYYDVvuBC1FrloysIYxZlJb4o6F7QxPK8omIoII7Rp5lN0d8x1IVoZwEYNO3B9ryFKWpSMFVWC-BEC70Lw2siDt53yX5ISOfYqU6_yr1d56jX56NE3nvdu8H165R_PDxJVgyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface-Induced Coacervation Facilitates Localized Precipitation of Mineral Precursors from Dilute Solutions</title><source>American Chemical Society</source><creator>Krounbi, Leilah ; Hedderick, Konrad ; Eyal, Zohar ; Aram, Lior ; Shimoni, Eyal ; Estroff, Lara A ; Gal, Assaf</creator><creatorcontrib>Krounbi, Leilah ; Hedderick, Konrad ; Eyal, Zohar ; Aram, Lior ; Shimoni, Eyal ; Estroff, Lara A ; Gal, Assaf</creatorcontrib><description>Many organisms orchestrate the controlled precipitation of minerals. This physiological process takes place at ambient conditions, using soluble ions as building blocks. A widespread strategy for such crystallization processes is using a multistep route, where the initial phase is metastable and gradually transforms into the mature mineral phase. Even though the maturation of these intermediate phases has been intensively studied, it remains unclear how the initial, far from equilibrium phase can form within the cellular context. A model system for controlled biomineralization is the production of coccoliths by marine microalgae. Coccoliths are calcium carbonate crystalline arrays that form within the intracellular environment, at very low calcium concentrations. Here, we used coccolith-derived and synthetic polymers to study, in vitro, the chemical interactions between calcium ions and organic macromolecules that precede coccolith formation. We used in situ analyses, including state-of-the-art cryo-electron tomography and liquid-cell atomic force microscopy, to study the interactions in bulk solution and on organic surfaces simultaneously. The results unveil a chemical process in which a functional surface induces the precipitation of a polymer–Ca dense phase, or a coacervate, at chemical conditions where precipitation in solution is kinetically inhibited. This strategy demonstrates how organisms can form dense Ca-rich phases from the submillimolar concentration of calcium within organelles. This Ca-rich phase can then transform into a mineral precursor in a subsequent step, without posing challenges to cellular homeostasis.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c04668</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-05, Vol.33 (10), p.3534-3542</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-3b051dae6fc9f0c92262b5d566be646d87ffa52f4666b461df5491cf906f6efd3</citedby><cites>FETCH-LOGICAL-a369t-3b051dae6fc9f0c92262b5d566be646d87ffa52f4666b461df5491cf906f6efd3</cites><orcidid>0000-0002-7658-1265 ; 0000-0002-8966-0624 ; 0000-0003-1488-1227 ; 0000000314881227 ; 0000000289660624 ; 0000000276581265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c04668$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c04668$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1782279$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krounbi, Leilah</creatorcontrib><creatorcontrib>Hedderick, Konrad</creatorcontrib><creatorcontrib>Eyal, Zohar</creatorcontrib><creatorcontrib>Aram, Lior</creatorcontrib><creatorcontrib>Shimoni, Eyal</creatorcontrib><creatorcontrib>Estroff, Lara A</creatorcontrib><creatorcontrib>Gal, Assaf</creatorcontrib><title>Surface-Induced Coacervation Facilitates Localized Precipitation of Mineral Precursors from Dilute Solutions</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Many organisms orchestrate the controlled precipitation of minerals. This physiological process takes place at ambient conditions, using soluble ions as building blocks. A widespread strategy for such crystallization processes is using a multistep route, where the initial phase is metastable and gradually transforms into the mature mineral phase. Even though the maturation of these intermediate phases has been intensively studied, it remains unclear how the initial, far from equilibrium phase can form within the cellular context. A model system for controlled biomineralization is the production of coccoliths by marine microalgae. Coccoliths are calcium carbonate crystalline arrays that form within the intracellular environment, at very low calcium concentrations. Here, we used coccolith-derived and synthetic polymers to study, in vitro, the chemical interactions between calcium ions and organic macromolecules that precede coccolith formation. We used in situ analyses, including state-of-the-art cryo-electron tomography and liquid-cell atomic force microscopy, to study the interactions in bulk solution and on organic surfaces simultaneously. The results unveil a chemical process in which a functional surface induces the precipitation of a polymer–Ca dense phase, or a coacervate, at chemical conditions where precipitation in solution is kinetically inhibited. This strategy demonstrates how organisms can form dense Ca-rich phases from the submillimolar concentration of calcium within organelles. This Ca-rich phase can then transform into a mineral precursor in a subsequent step, without posing challenges to cellular homeostasis.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKc_QQi-dyZZk7aPMt0cTBSmzyG9TVhG24wkFfTXm7rhq0-He-93DtyD0C0lM0oYvVcQZrDTXaei9jMCJBeiPEMTyhnJOCHsHE1IWRVZXnBxia5C2BNCk7WcoHY7eKNAZ-u-GUA3eOHS5D9VtK7HSwW2tTHlBrxxoFr7nZA3r8EexvXIOINfbK-9an8Pgw_OB2y86_CjbYeo8dYlSWi4RhdGtUHfnHSKPpZP74vnbPO6Wi8eNpmaiypm85pw2igtDFSGQMWYYDVvuBC1FrloysIYxZlJb4o6F7QxPK8omIoII7Rp5lN0d8x1IVoZwEYNO3B9ryFKWpSMFVWC-BEC70Lw2siDt53yX5ISOfYqU6_yr1d56jX56NE3nvdu8H165R_PDxJVgyE</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Krounbi, Leilah</creator><creator>Hedderick, Konrad</creator><creator>Eyal, Zohar</creator><creator>Aram, Lior</creator><creator>Shimoni, Eyal</creator><creator>Estroff, Lara A</creator><creator>Gal, Assaf</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7658-1265</orcidid><orcidid>https://orcid.org/0000-0002-8966-0624</orcidid><orcidid>https://orcid.org/0000-0003-1488-1227</orcidid><orcidid>https://orcid.org/0000000314881227</orcidid><orcidid>https://orcid.org/0000000289660624</orcidid><orcidid>https://orcid.org/0000000276581265</orcidid></search><sort><creationdate>20210525</creationdate><title>Surface-Induced Coacervation Facilitates Localized Precipitation of Mineral Precursors from Dilute Solutions</title><author>Krounbi, Leilah ; Hedderick, Konrad ; Eyal, Zohar ; Aram, Lior ; Shimoni, Eyal ; Estroff, Lara A ; Gal, Assaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-3b051dae6fc9f0c92262b5d566be646d87ffa52f4666b461df5491cf906f6efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krounbi, Leilah</creatorcontrib><creatorcontrib>Hedderick, Konrad</creatorcontrib><creatorcontrib>Eyal, Zohar</creatorcontrib><creatorcontrib>Aram, Lior</creatorcontrib><creatorcontrib>Shimoni, Eyal</creatorcontrib><creatorcontrib>Estroff, Lara A</creatorcontrib><creatorcontrib>Gal, Assaf</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krounbi, Leilah</au><au>Hedderick, Konrad</au><au>Eyal, Zohar</au><au>Aram, Lior</au><au>Shimoni, Eyal</au><au>Estroff, Lara A</au><au>Gal, Assaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Induced Coacervation Facilitates Localized Precipitation of Mineral Precursors from Dilute Solutions</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-05-25</date><risdate>2021</risdate><volume>33</volume><issue>10</issue><spage>3534</spage><epage>3542</epage><pages>3534-3542</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Many organisms orchestrate the controlled precipitation of minerals. This physiological process takes place at ambient conditions, using soluble ions as building blocks. A widespread strategy for such crystallization processes is using a multistep route, where the initial phase is metastable and gradually transforms into the mature mineral phase. Even though the maturation of these intermediate phases has been intensively studied, it remains unclear how the initial, far from equilibrium phase can form within the cellular context. A model system for controlled biomineralization is the production of coccoliths by marine microalgae. Coccoliths are calcium carbonate crystalline arrays that form within the intracellular environment, at very low calcium concentrations. Here, we used coccolith-derived and synthetic polymers to study, in vitro, the chemical interactions between calcium ions and organic macromolecules that precede coccolith formation. We used in situ analyses, including state-of-the-art cryo-electron tomography and liquid-cell atomic force microscopy, to study the interactions in bulk solution and on organic surfaces simultaneously. The results unveil a chemical process in which a functional surface induces the precipitation of a polymer–Ca dense phase, or a coacervate, at chemical conditions where precipitation in solution is kinetically inhibited. This strategy demonstrates how organisms can form dense Ca-rich phases from the submillimolar concentration of calcium within organelles. This Ca-rich phase can then transform into a mineral precursor in a subsequent step, without posing challenges to cellular homeostasis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c04668</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7658-1265</orcidid><orcidid>https://orcid.org/0000-0002-8966-0624</orcidid><orcidid>https://orcid.org/0000-0003-1488-1227</orcidid><orcidid>https://orcid.org/0000000314881227</orcidid><orcidid>https://orcid.org/0000000289660624</orcidid><orcidid>https://orcid.org/0000000276581265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-05, Vol.33 (10), p.3534-3542
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1782279
source American Chemical Society
title Surface-Induced Coacervation Facilitates Localized Precipitation of Mineral Precursors from Dilute Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Induced%20Coacervation%20Facilitates%20Localized%20Precipitation%20of%20Mineral%20Precursors%20from%20Dilute%20Solutions&rft.jtitle=Chemistry%20of%20materials&rft.au=Krounbi,%20Leilah&rft.date=2021-05-25&rft.volume=33&rft.issue=10&rft.spage=3534&rft.epage=3542&rft.pages=3534-3542&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c04668&rft_dat=%3Cacs_osti_%3Ec827526474%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true