Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties

Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2020-07, Vol.4 (7), Article 073603
Hauptverfasser: Frazer, Travis D., Knobloch, Joshua L., Hernández-Charpak, Jorge N., Hoogeboom-Pot, Kathleen M., Nardi, Damiano, Yazdi, Sadegh, Chao, Weilun, Anderson, Erik H., Tripp, Marie K., King, Sean W., Kapteyn, Henry C., Murnane, Margaret M., Abad, Begoña
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physical review materials
container_volume 4
creator Frazer, Travis D.
Knobloch, Joshua L.
Hernández-Charpak, Jorge N.
Hoogeboom-Pot, Kathleen M.
Nardi, Damiano
Yazdi, Sadegh
Chao, Weilun
Anderson, Erik H.
Tripp, Marie K.
King, Sean W.
Kapteyn, Henry C.
Murnane, Margaret M.
Abad, Begoña
description Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics.
doi_str_mv 10.1103/PhysRevMaterials.4.073603
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevMaterials_4_073603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</originalsourceid><addsrcrecordid>eNpdkMFOwzAQRCMEEhX0Hwz3FDuO44QbqihUKgIhOEfOeqMYXCeyHVA58uWkKgfEafcw-3ZmkuSC0QVjlF89dbvwjB8PKqI3yoZFvqCSF5QfJbMslyKtKsGP_-ynyTyEN0opKwXLZDVLvlejtQQ65RXsKV8qmt6RviWjjV7FzjgiUrcltv9MyTvRBi1C9AZIY6zaoQ_XZO1aO6ID3N_pflAuBqKcJmH0rQIMZELGDskWp0_OgLJk8P2APhoM58lJO5nH-e88S15Xty_L-3TzeLde3mxS4HkeU5SZzllTYqtV2RRKNmWhKZVQ8qapJBQN8AoQoSyE0LnMilzQTChNVdMCaH6WXB64fYimDmDi5AZ656Y8NZNlxgSdRNVBBL4PwWNbD95sld_VjNb70uv_pdd5fSid_wBtCn4L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</title><source>American Physical Society Journals</source><creator>Frazer, Travis D. ; Knobloch, Joshua L. ; Hernández-Charpak, Jorge N. ; Hoogeboom-Pot, Kathleen M. ; Nardi, Damiano ; Yazdi, Sadegh ; Chao, Weilun ; Anderson, Erik H. ; Tripp, Marie K. ; King, Sean W. ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Abad, Begoña</creator><creatorcontrib>Frazer, Travis D. ; Knobloch, Joshua L. ; Hernández-Charpak, Jorge N. ; Hoogeboom-Pot, Kathleen M. ; Nardi, Damiano ; Yazdi, Sadegh ; Chao, Weilun ; Anderson, Erik H. ; Tripp, Marie K. ; King, Sean W. ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Abad, Begoña ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.4.073603</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>bilayer films ; dielectrics ; elastic modulus ; energy-dispersive x-ray spectroscopy ; femtosecond laser irradiation ; high-harmonic generation ; MATERIALS SCIENCE ; poisson ratio ; scanning transmission electron microscopy ; surface acoustic wave ; surfaces ; ultrathin films</subject><ispartof>Physical review materials, 2020-07, Vol.4 (7), Article 073603</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</citedby><cites>FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</cites><orcidid>0000-0002-4086-3746 ; 0000-0002-5162-4230 ; 0000-0002-7595-1527 ; 0000-0001-5400-7679 ; 0000000240863746 ; 0000000251624230 ; 0000000275951527 ; 0000000154007679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782150$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Frazer, Travis D.</creatorcontrib><creatorcontrib>Knobloch, Joshua L.</creatorcontrib><creatorcontrib>Hernández-Charpak, Jorge N.</creatorcontrib><creatorcontrib>Hoogeboom-Pot, Kathleen M.</creatorcontrib><creatorcontrib>Nardi, Damiano</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Anderson, Erik H.</creatorcontrib><creatorcontrib>Tripp, Marie K.</creatorcontrib><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Kapteyn, Henry C.</creatorcontrib><creatorcontrib>Murnane, Margaret M.</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</title><title>Physical review materials</title><description>Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics.</description><subject>bilayer films</subject><subject>dielectrics</subject><subject>elastic modulus</subject><subject>energy-dispersive x-ray spectroscopy</subject><subject>femtosecond laser irradiation</subject><subject>high-harmonic generation</subject><subject>MATERIALS SCIENCE</subject><subject>poisson ratio</subject><subject>scanning transmission electron microscopy</subject><subject>surface acoustic wave</subject><subject>surfaces</subject><subject>ultrathin films</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMFOwzAQRCMEEhX0Hwz3FDuO44QbqihUKgIhOEfOeqMYXCeyHVA58uWkKgfEafcw-3ZmkuSC0QVjlF89dbvwjB8PKqI3yoZFvqCSF5QfJbMslyKtKsGP_-ynyTyEN0opKwXLZDVLvlejtQQ65RXsKV8qmt6RviWjjV7FzjgiUrcltv9MyTvRBi1C9AZIY6zaoQ_XZO1aO6ID3N_pflAuBqKcJmH0rQIMZELGDskWp0_OgLJk8P2APhoM58lJO5nH-e88S15Xty_L-3TzeLde3mxS4HkeU5SZzllTYqtV2RRKNmWhKZVQ8qapJBQN8AoQoSyE0LnMilzQTChNVdMCaH6WXB64fYimDmDi5AZ656Y8NZNlxgSdRNVBBL4PwWNbD95sld_VjNb70uv_pdd5fSid_wBtCn4L</recordid><startdate>20200713</startdate><enddate>20200713</enddate><creator>Frazer, Travis D.</creator><creator>Knobloch, Joshua L.</creator><creator>Hernández-Charpak, Jorge N.</creator><creator>Hoogeboom-Pot, Kathleen M.</creator><creator>Nardi, Damiano</creator><creator>Yazdi, Sadegh</creator><creator>Chao, Weilun</creator><creator>Anderson, Erik H.</creator><creator>Tripp, Marie K.</creator><creator>King, Sean W.</creator><creator>Kapteyn, Henry C.</creator><creator>Murnane, Margaret M.</creator><creator>Abad, Begoña</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-7595-1527</orcidid><orcidid>https://orcid.org/0000-0001-5400-7679</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000275951527</orcidid><orcidid>https://orcid.org/0000000154007679</orcidid></search><sort><creationdate>20200713</creationdate><title>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</title><author>Frazer, Travis D. ; Knobloch, Joshua L. ; Hernández-Charpak, Jorge N. ; Hoogeboom-Pot, Kathleen M. ; Nardi, Damiano ; Yazdi, Sadegh ; Chao, Weilun ; Anderson, Erik H. ; Tripp, Marie K. ; King, Sean W. ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Abad, Begoña</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bilayer films</topic><topic>dielectrics</topic><topic>elastic modulus</topic><topic>energy-dispersive x-ray spectroscopy</topic><topic>femtosecond laser irradiation</topic><topic>high-harmonic generation</topic><topic>MATERIALS SCIENCE</topic><topic>poisson ratio</topic><topic>scanning transmission electron microscopy</topic><topic>surface acoustic wave</topic><topic>surfaces</topic><topic>ultrathin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frazer, Travis D.</creatorcontrib><creatorcontrib>Knobloch, Joshua L.</creatorcontrib><creatorcontrib>Hernández-Charpak, Jorge N.</creatorcontrib><creatorcontrib>Hoogeboom-Pot, Kathleen M.</creatorcontrib><creatorcontrib>Nardi, Damiano</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Anderson, Erik H.</creatorcontrib><creatorcontrib>Tripp, Marie K.</creatorcontrib><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Kapteyn, Henry C.</creatorcontrib><creatorcontrib>Murnane, Margaret M.</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frazer, Travis D.</au><au>Knobloch, Joshua L.</au><au>Hernández-Charpak, Jorge N.</au><au>Hoogeboom-Pot, Kathleen M.</au><au>Nardi, Damiano</au><au>Yazdi, Sadegh</au><au>Chao, Weilun</au><au>Anderson, Erik H.</au><au>Tripp, Marie K.</au><au>King, Sean W.</au><au>Kapteyn, Henry C.</au><au>Murnane, Margaret M.</au><au>Abad, Begoña</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</atitle><jtitle>Physical review materials</jtitle><date>2020-07-13</date><risdate>2020</risdate><volume>4</volume><issue>7</issue><artnum>073603</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.4.073603</doi><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-7595-1527</orcidid><orcidid>https://orcid.org/0000-0001-5400-7679</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000275951527</orcidid><orcidid>https://orcid.org/0000000154007679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2020-07, Vol.4 (7), Article 073603
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1782150
source American Physical Society Journals
subjects bilayer films
dielectrics
elastic modulus
energy-dispersive x-ray spectroscopy
femtosecond laser irradiation
high-harmonic generation
MATERIALS SCIENCE
poisson ratio
scanning transmission electron microscopy
surface acoustic wave
surfaces
ultrathin films
title Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20characterization%20of%20ultrathin%205-nm%20low-%20k%20dielectric%20bilayers:%20Influence%20of%20dopants%20and%20surfaces%20on%20the%20mechanical%20properties&rft.jtitle=Physical%20review%20materials&rft.au=Frazer,%20Travis%20D.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-07-13&rft.volume=4&rft.issue=7&rft.artnum=073603&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.4.073603&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevMaterials_4_073603%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true