Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties
Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properti...
Gespeichert in:
Veröffentlicht in: | Physical review materials 2020-07, Vol.4 (7), Article 073603 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physical review materials |
container_volume | 4 |
creator | Frazer, Travis D. Knobloch, Joshua L. Hernández-Charpak, Jorge N. Hoogeboom-Pot, Kathleen M. Nardi, Damiano Yazdi, Sadegh Chao, Weilun Anderson, Erik H. Tripp, Marie K. King, Sean W. Kapteyn, Henry C. Murnane, Margaret M. Abad, Begoña |
description | Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics. |
doi_str_mv | 10.1103/PhysRevMaterials.4.073603 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevMaterials_4_073603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</originalsourceid><addsrcrecordid>eNpdkMFOwzAQRCMEEhX0Hwz3FDuO44QbqihUKgIhOEfOeqMYXCeyHVA58uWkKgfEafcw-3ZmkuSC0QVjlF89dbvwjB8PKqI3yoZFvqCSF5QfJbMslyKtKsGP_-ynyTyEN0opKwXLZDVLvlejtQQ65RXsKV8qmt6RviWjjV7FzjgiUrcltv9MyTvRBi1C9AZIY6zaoQ_XZO1aO6ID3N_pflAuBqKcJmH0rQIMZELGDskWp0_OgLJk8P2APhoM58lJO5nH-e88S15Xty_L-3TzeLde3mxS4HkeU5SZzllTYqtV2RRKNmWhKZVQ8qapJBQN8AoQoSyE0LnMilzQTChNVdMCaH6WXB64fYimDmDi5AZ656Y8NZNlxgSdRNVBBL4PwWNbD95sld_VjNb70uv_pdd5fSid_wBtCn4L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</title><source>American Physical Society Journals</source><creator>Frazer, Travis D. ; Knobloch, Joshua L. ; Hernández-Charpak, Jorge N. ; Hoogeboom-Pot, Kathleen M. ; Nardi, Damiano ; Yazdi, Sadegh ; Chao, Weilun ; Anderson, Erik H. ; Tripp, Marie K. ; King, Sean W. ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Abad, Begoña</creator><creatorcontrib>Frazer, Travis D. ; Knobloch, Joshua L. ; Hernández-Charpak, Jorge N. ; Hoogeboom-Pot, Kathleen M. ; Nardi, Damiano ; Yazdi, Sadegh ; Chao, Weilun ; Anderson, Erik H. ; Tripp, Marie K. ; King, Sean W. ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Abad, Begoña ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.4.073603</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>bilayer films ; dielectrics ; elastic modulus ; energy-dispersive x-ray spectroscopy ; femtosecond laser irradiation ; high-harmonic generation ; MATERIALS SCIENCE ; poisson ratio ; scanning transmission electron microscopy ; surface acoustic wave ; surfaces ; ultrathin films</subject><ispartof>Physical review materials, 2020-07, Vol.4 (7), Article 073603</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</citedby><cites>FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</cites><orcidid>0000-0002-4086-3746 ; 0000-0002-5162-4230 ; 0000-0002-7595-1527 ; 0000-0001-5400-7679 ; 0000000240863746 ; 0000000251624230 ; 0000000275951527 ; 0000000154007679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782150$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Frazer, Travis D.</creatorcontrib><creatorcontrib>Knobloch, Joshua L.</creatorcontrib><creatorcontrib>Hernández-Charpak, Jorge N.</creatorcontrib><creatorcontrib>Hoogeboom-Pot, Kathleen M.</creatorcontrib><creatorcontrib>Nardi, Damiano</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Anderson, Erik H.</creatorcontrib><creatorcontrib>Tripp, Marie K.</creatorcontrib><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Kapteyn, Henry C.</creatorcontrib><creatorcontrib>Murnane, Margaret M.</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</title><title>Physical review materials</title><description>Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics.</description><subject>bilayer films</subject><subject>dielectrics</subject><subject>elastic modulus</subject><subject>energy-dispersive x-ray spectroscopy</subject><subject>femtosecond laser irradiation</subject><subject>high-harmonic generation</subject><subject>MATERIALS SCIENCE</subject><subject>poisson ratio</subject><subject>scanning transmission electron microscopy</subject><subject>surface acoustic wave</subject><subject>surfaces</subject><subject>ultrathin films</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMFOwzAQRCMEEhX0Hwz3FDuO44QbqihUKgIhOEfOeqMYXCeyHVA58uWkKgfEafcw-3ZmkuSC0QVjlF89dbvwjB8PKqI3yoZFvqCSF5QfJbMslyKtKsGP_-ynyTyEN0opKwXLZDVLvlejtQQ65RXsKV8qmt6RviWjjV7FzjgiUrcltv9MyTvRBi1C9AZIY6zaoQ_XZO1aO6ID3N_pflAuBqKcJmH0rQIMZELGDskWp0_OgLJk8P2APhoM58lJO5nH-e88S15Xty_L-3TzeLde3mxS4HkeU5SZzllTYqtV2RRKNmWhKZVQ8qapJBQN8AoQoSyE0LnMilzQTChNVdMCaH6WXB64fYimDmDi5AZ656Y8NZNlxgSdRNVBBL4PwWNbD95sld_VjNb70uv_pdd5fSid_wBtCn4L</recordid><startdate>20200713</startdate><enddate>20200713</enddate><creator>Frazer, Travis D.</creator><creator>Knobloch, Joshua L.</creator><creator>Hernández-Charpak, Jorge N.</creator><creator>Hoogeboom-Pot, Kathleen M.</creator><creator>Nardi, Damiano</creator><creator>Yazdi, Sadegh</creator><creator>Chao, Weilun</creator><creator>Anderson, Erik H.</creator><creator>Tripp, Marie K.</creator><creator>King, Sean W.</creator><creator>Kapteyn, Henry C.</creator><creator>Murnane, Margaret M.</creator><creator>Abad, Begoña</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-7595-1527</orcidid><orcidid>https://orcid.org/0000-0001-5400-7679</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000275951527</orcidid><orcidid>https://orcid.org/0000000154007679</orcidid></search><sort><creationdate>20200713</creationdate><title>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</title><author>Frazer, Travis D. ; Knobloch, Joshua L. ; Hernández-Charpak, Jorge N. ; Hoogeboom-Pot, Kathleen M. ; Nardi, Damiano ; Yazdi, Sadegh ; Chao, Weilun ; Anderson, Erik H. ; Tripp, Marie K. ; King, Sean W. ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Abad, Begoña</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-e72d41b8efda8b6a7b86d007c83bb97c6bc39ceec8655d472645025ad0abfccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bilayer films</topic><topic>dielectrics</topic><topic>elastic modulus</topic><topic>energy-dispersive x-ray spectroscopy</topic><topic>femtosecond laser irradiation</topic><topic>high-harmonic generation</topic><topic>MATERIALS SCIENCE</topic><topic>poisson ratio</topic><topic>scanning transmission electron microscopy</topic><topic>surface acoustic wave</topic><topic>surfaces</topic><topic>ultrathin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frazer, Travis D.</creatorcontrib><creatorcontrib>Knobloch, Joshua L.</creatorcontrib><creatorcontrib>Hernández-Charpak, Jorge N.</creatorcontrib><creatorcontrib>Hoogeboom-Pot, Kathleen M.</creatorcontrib><creatorcontrib>Nardi, Damiano</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Anderson, Erik H.</creatorcontrib><creatorcontrib>Tripp, Marie K.</creatorcontrib><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Kapteyn, Henry C.</creatorcontrib><creatorcontrib>Murnane, Margaret M.</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frazer, Travis D.</au><au>Knobloch, Joshua L.</au><au>Hernández-Charpak, Jorge N.</au><au>Hoogeboom-Pot, Kathleen M.</au><au>Nardi, Damiano</au><au>Yazdi, Sadegh</au><au>Chao, Weilun</au><au>Anderson, Erik H.</au><au>Tripp, Marie K.</au><au>King, Sean W.</au><au>Kapteyn, Henry C.</au><au>Murnane, Margaret M.</au><au>Abad, Begoña</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties</atitle><jtitle>Physical review materials</jtitle><date>2020-07-13</date><risdate>2020</risdate><volume>4</volume><issue>7</issue><artnum>073603</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Ultrathin films and multilayers, with controlled thickness down to single atomic layers, are critical for advanced technologies ranging from nanoelectronics to spintronics to quantum devices. However, for thicknesses less than 10 nm, surfaces and dopants contribute significantly to the film properties, which can differ dramatically from that of bulk materials. Therefore, for amorphous films being developed as low dielectric constant interfaces for nanoelectronics, the presence of surfaces or dopants can soften films and degrade their mechanical performance. Here we use coherent short-wavelength light to fully and nondestructively characterize the mechanical properties of individual films as thin as 5 nm within a bilayer. In general, we find that the mechanical properties depend both on the amount of doping and the presence of surfaces. In very thin (5-nm) silicon carbide bilayers with low hydrogen doping, surface effects induce a substantial softening - by almost an order of magnitude - compared with the same doping in thicker (46-nm) bilayers. These findings are important for informed design of ultrathin films for a host of nano- and quantum technologies, and for improving the switching speed and efficiency of next-generation electronics.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.4.073603</doi><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-7595-1527</orcidid><orcidid>https://orcid.org/0000-0001-5400-7679</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000275951527</orcidid><orcidid>https://orcid.org/0000000154007679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-9953 |
ispartof | Physical review materials, 2020-07, Vol.4 (7), Article 073603 |
issn | 2475-9953 2475-9953 |
language | eng |
recordid | cdi_osti_scitechconnect_1782150 |
source | American Physical Society Journals |
subjects | bilayer films dielectrics elastic modulus energy-dispersive x-ray spectroscopy femtosecond laser irradiation high-harmonic generation MATERIALS SCIENCE poisson ratio scanning transmission electron microscopy surface acoustic wave surfaces ultrathin films |
title | Full characterization of ultrathin 5-nm low- k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20characterization%20of%20ultrathin%205-nm%20low-%20k%20dielectric%20bilayers:%20Influence%20of%20dopants%20and%20surfaces%20on%20the%20mechanical%20properties&rft.jtitle=Physical%20review%20materials&rft.au=Frazer,%20Travis%20D.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-07-13&rft.volume=4&rft.issue=7&rft.artnum=073603&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.4.073603&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevMaterials_4_073603%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |