Machine learning for neutron reflectometry data analysis of two-layer thin films

Neutron reflectometry (NR) is a powerful tool for probing thin films at length scales down to nanometers. We investigated the use of a neural network to predict a two-layer thin film structure to model a given measured reflectivity curve. Application of this neural network to predict a thin film str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2021-09, Vol.2 (3), p.35001
Hauptverfasser: Doucet, Mathieu, Archibald, Richard K, Heller, William T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35001
container_title Machine learning: science and technology
container_volume 2
creator Doucet, Mathieu
Archibald, Richard K
Heller, William T
description Neutron reflectometry (NR) is a powerful tool for probing thin films at length scales down to nanometers. We investigated the use of a neural network to predict a two-layer thin film structure to model a given measured reflectivity curve. Application of this neural network to predict a thin film structure revealed that it was accurate and could provide an excellent starting point for traditional fitting methods. Employing prediction-guided fitting has considerable potential for more rapidly producing a result compared to the labor-intensive but commonly-used approach of trial and error searches prior to refinement. A deeper look at the stability of the predictive power of the neural network against statistical fluctuations of measured reflectivity profiles showed that the predictions are stable. We conclude that the approach presented here can provide valuable assistance to users of NR and should be further extended for use in studies of more complex n-layer thin film systems. This result also opens up the possibility of developing adaptive measurement systems in the future.
doi_str_mv 10.1088/2632-2153/abf257
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518769681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dc48aaeae45d32a92500b7f657904db5f52fb56e1479151e9e6e99bd3d30d4253</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouOjePQY9181Hk7ZHWfyCFT3oOaTpxM3STdYki_Tf21IRTzMMDy_zPghdUXJLSV2vmOSsYFTwlW4tE9UJWvydTv_t52iZ0o4QwgTlgpEFenvRZus84B509M5_Yhsi9nDMMXgcwfZgcthDjgPudNZYe90PySUcLM7foej1ABHnMQNb1-_TJTqzuk-w_J0X6OPh_n39VGxeH5_Xd5vClETmojNlrTVoKEXHmW6YIKStrBRVQ8quFVYw2woJtKwaKig0IKFp2o53nHQlE_wCXc-5IWWnknEZzNYE78d_Fa1qRuQE3czQIYavI6SsduEYxwZJjQbqSjaypiNFZsrEkNLYWR2i2-s4KErU5FdNAtUkUM1--Q8-tG1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518769681</pqid></control><display><type>article</type><title>Machine learning for neutron reflectometry data analysis of two-layer thin films</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Doucet, Mathieu ; Archibald, Richard K ; Heller, William T</creator><creatorcontrib>Doucet, Mathieu ; Archibald, Richard K ; Heller, William T ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Neutron reflectometry (NR) is a powerful tool for probing thin films at length scales down to nanometers. We investigated the use of a neural network to predict a two-layer thin film structure to model a given measured reflectivity curve. Application of this neural network to predict a thin film structure revealed that it was accurate and could provide an excellent starting point for traditional fitting methods. Employing prediction-guided fitting has considerable potential for more rapidly producing a result compared to the labor-intensive but commonly-used approach of trial and error searches prior to refinement. A deeper look at the stability of the predictive power of the neural network against statistical fluctuations of measured reflectivity profiles showed that the predictions are stable. We conclude that the approach presented here can provide valuable assistance to users of NR and should be further extended for use in studies of more complex n-layer thin film systems. This result also opens up the possibility of developing adaptive measurement systems in the future.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/abf257</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adaptive systems ; Data analysis ; Federal agencies ; Machine learning ; MATERIALS SCIENCE ; Neural networks ; Public access ; Reflectance ; Reflectometry ; Thin films</subject><ispartof>Machine learning: science and technology, 2021-09, Vol.2 (3), p.35001</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dc48aaeae45d32a92500b7f657904db5f52fb56e1479151e9e6e99bd3d30d4253</citedby><cites>FETCH-LOGICAL-c406t-dc48aaeae45d32a92500b7f657904db5f52fb56e1479151e9e6e99bd3d30d4253</cites><orcidid>0000-0002-5560-6478 ; 0000000164562975 ; 0000000255606478 ; 0000000245389780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782065$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Doucet, Mathieu</creatorcontrib><creatorcontrib>Archibald, Richard K</creatorcontrib><creatorcontrib>Heller, William T</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Machine learning for neutron reflectometry data analysis of two-layer thin films</title><title>Machine learning: science and technology</title><description>Neutron reflectometry (NR) is a powerful tool for probing thin films at length scales down to nanometers. We investigated the use of a neural network to predict a two-layer thin film structure to model a given measured reflectivity curve. Application of this neural network to predict a thin film structure revealed that it was accurate and could provide an excellent starting point for traditional fitting methods. Employing prediction-guided fitting has considerable potential for more rapidly producing a result compared to the labor-intensive but commonly-used approach of trial and error searches prior to refinement. A deeper look at the stability of the predictive power of the neural network against statistical fluctuations of measured reflectivity profiles showed that the predictions are stable. We conclude that the approach presented here can provide valuable assistance to users of NR and should be further extended for use in studies of more complex n-layer thin film systems. This result also opens up the possibility of developing adaptive measurement systems in the future.</description><subject>Adaptive systems</subject><subject>Data analysis</subject><subject>Federal agencies</subject><subject>Machine learning</subject><subject>MATERIALS SCIENCE</subject><subject>Neural networks</subject><subject>Public access</subject><subject>Reflectance</subject><subject>Reflectometry</subject><subject>Thin films</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1LxDAQhoMouOjePQY9181Hk7ZHWfyCFT3oOaTpxM3STdYki_Tf21IRTzMMDy_zPghdUXJLSV2vmOSsYFTwlW4tE9UJWvydTv_t52iZ0o4QwgTlgpEFenvRZus84B509M5_Yhsi9nDMMXgcwfZgcthDjgPudNZYe90PySUcLM7foej1ABHnMQNb1-_TJTqzuk-w_J0X6OPh_n39VGxeH5_Xd5vClETmojNlrTVoKEXHmW6YIKStrBRVQ8quFVYw2woJtKwaKig0IKFp2o53nHQlE_wCXc-5IWWnknEZzNYE78d_Fa1qRuQE3czQIYavI6SsduEYxwZJjQbqSjaypiNFZsrEkNLYWR2i2-s4KErU5FdNAtUkUM1--Q8-tG1w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Doucet, Mathieu</creator><creator>Archibald, Richard K</creator><creator>Heller, William T</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5560-6478</orcidid><orcidid>https://orcid.org/0000000164562975</orcidid><orcidid>https://orcid.org/0000000255606478</orcidid><orcidid>https://orcid.org/0000000245389780</orcidid></search><sort><creationdate>20210901</creationdate><title>Machine learning for neutron reflectometry data analysis of two-layer thin films</title><author>Doucet, Mathieu ; Archibald, Richard K ; Heller, William T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dc48aaeae45d32a92500b7f657904db5f52fb56e1479151e9e6e99bd3d30d4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Data analysis</topic><topic>Federal agencies</topic><topic>Machine learning</topic><topic>MATERIALS SCIENCE</topic><topic>Neural networks</topic><topic>Public access</topic><topic>Reflectance</topic><topic>Reflectometry</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doucet, Mathieu</creatorcontrib><creatorcontrib>Archibald, Richard K</creatorcontrib><creatorcontrib>Heller, William T</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doucet, Mathieu</au><au>Archibald, Richard K</au><au>Heller, William T</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for neutron reflectometry data analysis of two-layer thin films</atitle><jtitle>Machine learning: science and technology</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>2</volume><issue>3</issue><spage>35001</spage><pages>35001-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><abstract>Neutron reflectometry (NR) is a powerful tool for probing thin films at length scales down to nanometers. We investigated the use of a neural network to predict a two-layer thin film structure to model a given measured reflectivity curve. Application of this neural network to predict a thin film structure revealed that it was accurate and could provide an excellent starting point for traditional fitting methods. Employing prediction-guided fitting has considerable potential for more rapidly producing a result compared to the labor-intensive but commonly-used approach of trial and error searches prior to refinement. A deeper look at the stability of the predictive power of the neural network against statistical fluctuations of measured reflectivity profiles showed that the predictions are stable. We conclude that the approach presented here can provide valuable assistance to users of NR and should be further extended for use in studies of more complex n-layer thin film systems. This result also opens up the possibility of developing adaptive measurement systems in the future.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/abf257</doi><orcidid>https://orcid.org/0000-0002-5560-6478</orcidid><orcidid>https://orcid.org/0000000164562975</orcidid><orcidid>https://orcid.org/0000000255606478</orcidid><orcidid>https://orcid.org/0000000245389780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2021-09, Vol.2 (3), p.35001
issn 2632-2153
2632-2153
language eng
recordid cdi_osti_scitechconnect_1782065
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive systems
Data analysis
Federal agencies
Machine learning
MATERIALS SCIENCE
Neural networks
Public access
Reflectance
Reflectometry
Thin films
title Machine learning for neutron reflectometry data analysis of two-layer thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20neutron%20reflectometry%20data%20analysis%20of%20two-layer%20thin%20films&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Doucet,%20Mathieu&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-09-01&rft.volume=2&rft.issue=3&rft.spage=35001&rft.pages=35001-&rft.issn=2632-2153&rft.eissn=2632-2153&rft_id=info:doi/10.1088/2632-2153/abf257&rft_dat=%3Cproquest_osti_%3E2518769681%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518769681&rft_id=info:pmid/&rfr_iscdi=true