Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials

•Investigated the fracture of α-uranium polycrystals due to anisotropic thermal expansion.•Cooling resulted in severe fracture due to the larger anisotropy at elevated temperatures.•The total crack surface area decreased with decreasing grain misorientation.•The thermal expansion in the [010] direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2021-06, Vol.194 (C), p.110407, Article 110407
Hauptverfasser: Rezwan, Aashique A., Jokisaari, Andrea M., Tonks, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 110407
container_title Computational materials science
container_volume 194
creator Rezwan, Aashique A.
Jokisaari, Andrea M.
Tonks, Michael R.
description •Investigated the fracture of α-uranium polycrystals due to anisotropic thermal expansion.•Cooling resulted in severe fracture due to the larger anisotropy at elevated temperatures.•The total crack surface area decreased with decreasing grain misorientation.•The thermal expansion in the [010] direction was the primary cause for fracture. This work investigated brittle fracture of polycrystalline materials due to thermal stresses arising from anisotropic thermal expansion. We used phase-field fracture simulations with the properties of α-uranium (α-U) and assumed a linear elastic mechanical response. Three-dimensional simulations were used to predict fracture for various conditions and crystallographic textures. We found that fracture was more pronounced during cooling than during heating because the anisotropy increased with temperature. We also found that the total crack surface area increased with increasing average misorientation, while the net shape change of the material decreased with increasing misorientation. Two-dimensional simulations in which one crystallographic coefficient of thermal expansion (CTE) was set to zero indicated that the largest difference between the CTE in the three crystallographic directions dominates the fracture.
doi_str_mv 10.1016/j.commatsci.2021.110407
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1781928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025621001324</els_id><sourcerecordid>S0927025621001324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-2876d926d7d22d6d3e5182c324fbf76fcfe968da7a7e069a86b44d5bf699c26f3</originalsourceid><addsrcrecordid>eNqFkMtOAyEUhonRxHp5Bon7qcC0XJZN4y2pcaMrF4TCwdJMhwaosW8vkzFuXf2b_3LOh9ANJVNKKL_bTm3c7UzJNkwZYXRKKZkRcYImVArVEEnoKZoQxURD2Jyfo4uct6QmlWQT9PESHXSh_8TrFErpAPtkbDkkwO4AuERs-pBjSXEfLC4bSDvTYfjemz6H2OPQ433sjjYdczFdLQJcb4EUTJev0JmvAte_eoneH-7flk_N6vXxeblYNbZVtDRMCu4U4044xhx3LcypZLZlM7_2gnvrQXHpjDACCFdG8vVs5uZrz5WyjPv2Et2OvTGXoCuHAnZjY9-DLZoKSRWT1SRGk00x5wRe71PYmXTUlOgBpN7qP5B6AKlHkDW5GJNQf_gKkIYJ6C24kIYFF8O_HT_jtYLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rezwan, Aashique A. ; Jokisaari, Andrea M. ; Tonks, Michael R.</creator><creatorcontrib>Rezwan, Aashique A. ; Jokisaari, Andrea M. ; Tonks, Michael R.</creatorcontrib><description>•Investigated the fracture of α-uranium polycrystals due to anisotropic thermal expansion.•Cooling resulted in severe fracture due to the larger anisotropy at elevated temperatures.•The total crack surface area decreased with decreasing grain misorientation.•The thermal expansion in the [010] direction was the primary cause for fracture. This work investigated brittle fracture of polycrystalline materials due to thermal stresses arising from anisotropic thermal expansion. We used phase-field fracture simulations with the properties of α-uranium (α-U) and assumed a linear elastic mechanical response. Three-dimensional simulations were used to predict fracture for various conditions and crystallographic textures. We found that fracture was more pronounced during cooling than during heating because the anisotropy increased with temperature. We also found that the total crack surface area increased with increasing average misorientation, while the net shape change of the material decreased with increasing misorientation. Two-dimensional simulations in which one crystallographic coefficient of thermal expansion (CTE) was set to zero indicated that the largest difference between the CTE in the three crystallographic directions dominates the fracture.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2021.110407</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>[formula omitted]-Uranium ; Anisotropic thermal expansion ; Fracture ; Phase field</subject><ispartof>Computational materials science, 2021-06, Vol.194 (C), p.110407, Article 110407</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-2876d926d7d22d6d3e5182c324fbf76fcfe968da7a7e069a86b44d5bf699c26f3</citedby><cites>FETCH-LOGICAL-c391t-2876d926d7d22d6d3e5182c324fbf76fcfe968da7a7e069a86b44d5bf699c26f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025621001324$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1781928$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rezwan, Aashique A.</creatorcontrib><creatorcontrib>Jokisaari, Andrea M.</creatorcontrib><creatorcontrib>Tonks, Michael R.</creatorcontrib><title>Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials</title><title>Computational materials science</title><description>•Investigated the fracture of α-uranium polycrystals due to anisotropic thermal expansion.•Cooling resulted in severe fracture due to the larger anisotropy at elevated temperatures.•The total crack surface area decreased with decreasing grain misorientation.•The thermal expansion in the [010] direction was the primary cause for fracture. This work investigated brittle fracture of polycrystalline materials due to thermal stresses arising from anisotropic thermal expansion. We used phase-field fracture simulations with the properties of α-uranium (α-U) and assumed a linear elastic mechanical response. Three-dimensional simulations were used to predict fracture for various conditions and crystallographic textures. We found that fracture was more pronounced during cooling than during heating because the anisotropy increased with temperature. We also found that the total crack surface area increased with increasing average misorientation, while the net shape change of the material decreased with increasing misorientation. Two-dimensional simulations in which one crystallographic coefficient of thermal expansion (CTE) was set to zero indicated that the largest difference between the CTE in the three crystallographic directions dominates the fracture.</description><subject>[formula omitted]-Uranium</subject><subject>Anisotropic thermal expansion</subject><subject>Fracture</subject><subject>Phase field</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAyEUhonRxHp5Bon7qcC0XJZN4y2pcaMrF4TCwdJMhwaosW8vkzFuXf2b_3LOh9ANJVNKKL_bTm3c7UzJNkwZYXRKKZkRcYImVArVEEnoKZoQxURD2Jyfo4uct6QmlWQT9PESHXSh_8TrFErpAPtkbDkkwO4AuERs-pBjSXEfLC4bSDvTYfjemz6H2OPQ433sjjYdczFdLQJcb4EUTJev0JmvAte_eoneH-7flk_N6vXxeblYNbZVtDRMCu4U4044xhx3LcypZLZlM7_2gnvrQXHpjDACCFdG8vVs5uZrz5WyjPv2Et2OvTGXoCuHAnZjY9-DLZoKSRWT1SRGk00x5wRe71PYmXTUlOgBpN7qP5B6AKlHkDW5GJNQf_gKkIYJ6C24kIYFF8O_HT_jtYLg</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Rezwan, Aashique A.</creator><creator>Jokisaari, Andrea M.</creator><creator>Tonks, Michael R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20210615</creationdate><title>Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials</title><author>Rezwan, Aashique A. ; Jokisaari, Andrea M. ; Tonks, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-2876d926d7d22d6d3e5182c324fbf76fcfe968da7a7e069a86b44d5bf699c26f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>[formula omitted]-Uranium</topic><topic>Anisotropic thermal expansion</topic><topic>Fracture</topic><topic>Phase field</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezwan, Aashique A.</creatorcontrib><creatorcontrib>Jokisaari, Andrea M.</creatorcontrib><creatorcontrib>Tonks, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezwan, Aashique A.</au><au>Jokisaari, Andrea M.</au><au>Tonks, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials</atitle><jtitle>Computational materials science</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>194</volume><issue>C</issue><spage>110407</spage><pages>110407-</pages><artnum>110407</artnum><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>•Investigated the fracture of α-uranium polycrystals due to anisotropic thermal expansion.•Cooling resulted in severe fracture due to the larger anisotropy at elevated temperatures.•The total crack surface area decreased with decreasing grain misorientation.•The thermal expansion in the [010] direction was the primary cause for fracture. This work investigated brittle fracture of polycrystalline materials due to thermal stresses arising from anisotropic thermal expansion. We used phase-field fracture simulations with the properties of α-uranium (α-U) and assumed a linear elastic mechanical response. Three-dimensional simulations were used to predict fracture for various conditions and crystallographic textures. We found that fracture was more pronounced during cooling than during heating because the anisotropy increased with temperature. We also found that the total crack surface area increased with increasing average misorientation, while the net shape change of the material decreased with increasing misorientation. Two-dimensional simulations in which one crystallographic coefficient of thermal expansion (CTE) was set to zero indicated that the largest difference between the CTE in the three crystallographic directions dominates the fracture.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2021.110407</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2021-06, Vol.194 (C), p.110407, Article 110407
issn 0927-0256
1879-0801
language eng
recordid cdi_osti_scitechconnect_1781928
source Elsevier ScienceDirect Journals Complete
subjects [formula omitted]-Uranium
Anisotropic thermal expansion
Fracture
Phase field
title Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20brittle%20fracture%20due%20to%20anisotropic%20thermal%20expansion%20in%20polycrystalline%20materials&rft.jtitle=Computational%20materials%20science&rft.au=Rezwan,%20Aashique%20A.&rft.date=2021-06-15&rft.volume=194&rft.issue=C&rft.spage=110407&rft.pages=110407-&rft.artnum=110407&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2021.110407&rft_dat=%3Celsevier_osti_%3ES0927025621001324%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927025621001324&rfr_iscdi=true