Energy performance analysis of a membrane dehumidification system

In warm and humid climates, a primary source of building energy consumption is dehumidification of conditioned air supplied to the building spaces. The system analyzed utilizes a selective membrane to remove water vapor from ambient air instead of a vapor compression cycle or a desiccant. This work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refrigeration 2021-07, Vol.127 (C), p.230-238
Hauptverfasser: Bynum, John D., Claridge, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue C
container_start_page 230
container_title International journal of refrigeration
container_volume 127
creator Bynum, John D.
Claridge, David E.
description In warm and humid climates, a primary source of building energy consumption is dehumidification of conditioned air supplied to the building spaces. The system analyzed utilizes a selective membrane to remove water vapor from ambient air instead of a vapor compression cycle or a desiccant. This work analyzed a membrane dehumidification system with a focus on the system energy performance. A system performance goal was set by the project sponsor for an inlet air condition of 32.2 °C and 90% relative humidity, an outlet condition of 12.8 °C and 50% relative humidity and a total cooling load of 3.52 kW resulting in a target COPlatent for the system of 3.34. Models of the basic system components were used to develop the system, analyze operating parameters and predict performance. The results indicate that the system requires two optimizations to meet the target performance: condenser pressure optimization and the use of multiple membrane segments operating at different pressures. Subsequently, a model was developed to analyze the performance of the final system configuration under a variety of operating conditions and yielded a maximum COPlatent of 4.37 for membrane properties comparable to those of the earliest membrane module tested. This may be compared with a COP of about 3.5 for current refrigeration technology at these conditions. The best small membrane sample produced to date would increase the COPlatent of the membrane system to well above 8, suggesting that the membrane system has high promise. Uncertainty analysis was also performed to assess the simulation results.
doi_str_mv 10.1016/j.ijrefrig.2021.01.024
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1781854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014070072100044X</els_id><sourcerecordid>2556434969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-250e44167145e9873f9f412d926ab18088aaa5b79a599d348aaa889523c177c3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQYo-d-amSZO8OYb_YODL3kOW3m4pazOTTui3t2X6LFy4XDj3cM6PkHugC6BQPjUL30Sso98tGGWwoOMwfkFmoKTOGVVwSWYUOM0lpfKa3KTUUAqSCjUjy5cO427IjhjrEFvbOcxsZw9D8ikLdWazFttttB1mFe5Pra987Z3tfeiyNKQe21tyVdtDwrvfPSeb15fN6j1ff759rJbr3HEQfc4ERc6hlMAFaiWLWtccWKVZabegqFLWWrGV2gqtq4JPp1JasMKBlK6Yk4ezbUi9N8n5Ht3eha5D1xuQCpTgo-jxLDrG8HXC1JsmnOJYJxkmRMkLrks9qsqzysWQ0ojOHKNvbRwMUDMhNY35Q2ompIaOwyb75_Mjjj2_PcYpB47IKh-nGFXw_1n8ADlvgXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556434969</pqid></control><display><type>article</type><title>Energy performance analysis of a membrane dehumidification system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bynum, John D. ; Claridge, David E.</creator><creatorcontrib>Bynum, John D. ; Claridge, David E.</creatorcontrib><description>In warm and humid climates, a primary source of building energy consumption is dehumidification of conditioned air supplied to the building spaces. The system analyzed utilizes a selective membrane to remove water vapor from ambient air instead of a vapor compression cycle or a desiccant. This work analyzed a membrane dehumidification system with a focus on the system energy performance. A system performance goal was set by the project sponsor for an inlet air condition of 32.2 °C and 90% relative humidity, an outlet condition of 12.8 °C and 50% relative humidity and a total cooling load of 3.52 kW resulting in a target COPlatent for the system of 3.34. Models of the basic system components were used to develop the system, analyze operating parameters and predict performance. The results indicate that the system requires two optimizations to meet the target performance: condenser pressure optimization and the use of multiple membrane segments operating at different pressures. Subsequently, a model was developed to analyze the performance of the final system configuration under a variety of operating conditions and yielded a maximum COPlatent of 4.37 for membrane properties comparable to those of the earliest membrane module tested. This may be compared with a COP of about 3.5 for current refrigeration technology at these conditions. The best small membrane sample produced to date would increase the COPlatent of the membrane system to well above 8, suggesting that the membrane system has high promise. Uncertainty analysis was also performed to assess the simulation results.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2021.01.024</identifier><language>eng</language><publisher>Paris: Elsevier Ltd</publisher><subject>Air conditioners ; Air conditioning ; Conditionnement d'air ; Cooling ; Cooling loads ; Dehumidification ; Desiccants ; Déshumidification membranaire ; Energy consumption ; Humidity ; Latent cooling ; Mathematical models ; Membrane dehumidification ; Membrane separation ; Membranes ; Optimization ; Refrigeration ; Refroidissement latent ; Refroidissement sensible ; Relative humidity ; Sensible cooling ; Simulation ; Studies ; Séparation membranaire ; Uncertainty analysis ; Water vapor</subject><ispartof>International journal of refrigeration, 2021-07, Vol.127 (C), p.230-238</ispartof><rights>2021 Elsevier Ltd and IIR</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-250e44167145e9873f9f412d926ab18088aaa5b79a599d348aaa889523c177c3</citedby><cites>FETCH-LOGICAL-c415t-250e44167145e9873f9f412d926ab18088aaa5b79a599d348aaa889523c177c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrefrig.2021.01.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1781854$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bynum, John D.</creatorcontrib><creatorcontrib>Claridge, David E.</creatorcontrib><title>Energy performance analysis of a membrane dehumidification system</title><title>International journal of refrigeration</title><description>In warm and humid climates, a primary source of building energy consumption is dehumidification of conditioned air supplied to the building spaces. The system analyzed utilizes a selective membrane to remove water vapor from ambient air instead of a vapor compression cycle or a desiccant. This work analyzed a membrane dehumidification system with a focus on the system energy performance. A system performance goal was set by the project sponsor for an inlet air condition of 32.2 °C and 90% relative humidity, an outlet condition of 12.8 °C and 50% relative humidity and a total cooling load of 3.52 kW resulting in a target COPlatent for the system of 3.34. Models of the basic system components were used to develop the system, analyze operating parameters and predict performance. The results indicate that the system requires two optimizations to meet the target performance: condenser pressure optimization and the use of multiple membrane segments operating at different pressures. Subsequently, a model was developed to analyze the performance of the final system configuration under a variety of operating conditions and yielded a maximum COPlatent of 4.37 for membrane properties comparable to those of the earliest membrane module tested. This may be compared with a COP of about 3.5 for current refrigeration technology at these conditions. The best small membrane sample produced to date would increase the COPlatent of the membrane system to well above 8, suggesting that the membrane system has high promise. Uncertainty analysis was also performed to assess the simulation results.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Conditionnement d'air</subject><subject>Cooling</subject><subject>Cooling loads</subject><subject>Dehumidification</subject><subject>Desiccants</subject><subject>Déshumidification membranaire</subject><subject>Energy consumption</subject><subject>Humidity</subject><subject>Latent cooling</subject><subject>Mathematical models</subject><subject>Membrane dehumidification</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Optimization</subject><subject>Refrigeration</subject><subject>Refroidissement latent</subject><subject>Refroidissement sensible</subject><subject>Relative humidity</subject><subject>Sensible cooling</subject><subject>Simulation</subject><subject>Studies</subject><subject>Séparation membranaire</subject><subject>Uncertainty analysis</subject><subject>Water vapor</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKdfQYo-d-amSZO8OYb_YODL3kOW3m4pazOTTui3t2X6LFy4XDj3cM6PkHugC6BQPjUL30Sso98tGGWwoOMwfkFmoKTOGVVwSWYUOM0lpfKa3KTUUAqSCjUjy5cO427IjhjrEFvbOcxsZw9D8ikLdWazFttttB1mFe5Pra987Z3tfeiyNKQe21tyVdtDwrvfPSeb15fN6j1ff759rJbr3HEQfc4ERc6hlMAFaiWLWtccWKVZabegqFLWWrGV2gqtq4JPp1JasMKBlK6Yk4ezbUi9N8n5Ht3eha5D1xuQCpTgo-jxLDrG8HXC1JsmnOJYJxkmRMkLrks9qsqzysWQ0ojOHKNvbRwMUDMhNY35Q2ompIaOwyb75_Mjjj2_PcYpB47IKh-nGFXw_1n8ADlvgXM</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Bynum, John D.</creator><creator>Claridge, David E.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>OTOTI</scope></search><sort><creationdate>202107</creationdate><title>Energy performance analysis of a membrane dehumidification system</title><author>Bynum, John D. ; Claridge, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-250e44167145e9873f9f412d926ab18088aaa5b79a599d348aaa889523c177c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Conditionnement d'air</topic><topic>Cooling</topic><topic>Cooling loads</topic><topic>Dehumidification</topic><topic>Desiccants</topic><topic>Déshumidification membranaire</topic><topic>Energy consumption</topic><topic>Humidity</topic><topic>Latent cooling</topic><topic>Mathematical models</topic><topic>Membrane dehumidification</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Optimization</topic><topic>Refrigeration</topic><topic>Refroidissement latent</topic><topic>Refroidissement sensible</topic><topic>Relative humidity</topic><topic>Sensible cooling</topic><topic>Simulation</topic><topic>Studies</topic><topic>Séparation membranaire</topic><topic>Uncertainty analysis</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bynum, John D.</creatorcontrib><creatorcontrib>Claridge, David E.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bynum, John D.</au><au>Claridge, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy performance analysis of a membrane dehumidification system</atitle><jtitle>International journal of refrigeration</jtitle><date>2021-07</date><risdate>2021</risdate><volume>127</volume><issue>C</issue><spage>230</spage><epage>238</epage><pages>230-238</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>In warm and humid climates, a primary source of building energy consumption is dehumidification of conditioned air supplied to the building spaces. The system analyzed utilizes a selective membrane to remove water vapor from ambient air instead of a vapor compression cycle or a desiccant. This work analyzed a membrane dehumidification system with a focus on the system energy performance. A system performance goal was set by the project sponsor for an inlet air condition of 32.2 °C and 90% relative humidity, an outlet condition of 12.8 °C and 50% relative humidity and a total cooling load of 3.52 kW resulting in a target COPlatent for the system of 3.34. Models of the basic system components were used to develop the system, analyze operating parameters and predict performance. The results indicate that the system requires two optimizations to meet the target performance: condenser pressure optimization and the use of multiple membrane segments operating at different pressures. Subsequently, a model was developed to analyze the performance of the final system configuration under a variety of operating conditions and yielded a maximum COPlatent of 4.37 for membrane properties comparable to those of the earliest membrane module tested. This may be compared with a COP of about 3.5 for current refrigeration technology at these conditions. The best small membrane sample produced to date would increase the COPlatent of the membrane system to well above 8, suggesting that the membrane system has high promise. Uncertainty analysis was also performed to assess the simulation results.</abstract><cop>Paris</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2021.01.024</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7007
ispartof International journal of refrigeration, 2021-07, Vol.127 (C), p.230-238
issn 0140-7007
1879-2081
language eng
recordid cdi_osti_scitechconnect_1781854
source Access via ScienceDirect (Elsevier)
subjects Air conditioners
Air conditioning
Conditionnement d'air
Cooling
Cooling loads
Dehumidification
Desiccants
Déshumidification membranaire
Energy consumption
Humidity
Latent cooling
Mathematical models
Membrane dehumidification
Membrane separation
Membranes
Optimization
Refrigeration
Refroidissement latent
Refroidissement sensible
Relative humidity
Sensible cooling
Simulation
Studies
Séparation membranaire
Uncertainty analysis
Water vapor
title Energy performance analysis of a membrane dehumidification system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20performance%20analysis%20of%20a%20membrane%20dehumidification%20system&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Bynum,%20John%20D.&rft.date=2021-07&rft.volume=127&rft.issue=C&rft.spage=230&rft.epage=238&rft.pages=230-238&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2021.01.024&rft_dat=%3Cproquest_osti_%3E2556434969%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556434969&rft_id=info:pmid/&rft_els_id=S014070072100044X&rfr_iscdi=true