Reaction Rate Enhancement for Cu(In,Ga)Se2 Absorber Materials Using Ag-Alloying
The addition of Ag to Cu-Ga-In precursors for synthesizing (Ag,Cu)(In,Ga)Se 2 (ACIGS) thin films has shown benefits including improved adhesion, greater process tolerance, and potential for improved device performance. In this study, reaction pathways to form Cu(In,Ga)Se 2 (CIGS) and ACIGS were stud...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2019-05, Vol.9 (3), p.898-905 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 905 |
---|---|
container_issue | 3 |
container_start_page | 898 |
container_title | IEEE journal of photovoltaics |
container_volume | 9 |
creator | Soltanmohammad, Sina Tong, Ho Ming Anderson, Timothy J. Shafarman, William N. |
description | The addition of Ag to Cu-Ga-In precursors for synthesizing (Ag,Cu)(In,Ga)Se 2 (ACIGS) thin films has shown benefits including improved adhesion, greater process tolerance, and potential for improved device performance. In this study, reaction pathways to form Cu(In,Ga)Se 2 (CIGS) and ACIGS were studied by time-progressive reactions at 450 °C in a 5% Ar/H 2 Se atmosphere followed by ex situ characterization. Results indicated that the addition of 25% Ag/(Ag+Cu) to the CIGS film reduces the reaction time by 50%. X-ray diffraction (XRD) analysis of CIGS films showed that the CuInSe 2 phase initially formed after 3.5 min. The slow reaction of the stable γ-Cu 9 (In,Ga) 4 phase, however, required more than 20 min to complete. Importantly, the addition of Ag to the CIGS film accelerated the reaction. Energy-dispersive X-ray spectroscopy shows that Ga/(Ga+In) grading occurs in the first 10 min of the reaction. XRD analysis showed that the chalcopyrite phase fully forms after 10 min and no significant changes were observed in samples selenized from 10-45 min. Reaction pathways of Ag-alloyed films were further characterized using in situ high temperature XRD analysis. The onset temperature of Se reaction was detected at 230 °C and a AgIn 2 phase transformation to (Ag,Cu)In 2 occurred during the early stage of the reaction. |
doi_str_mv | 10.1109/JPHOTOV.2019.2897582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1780906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8651328</ieee_id><sourcerecordid>2214422146</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1912-cda75e19c22b5b42a893bb0ada84797128764b31ef094ad25f15955d31e6c9673</originalsourceid><addsrcrecordid>eNo1jl9PwjAUxRujiQT5BPrQ6IsmDvt_7eNCEDSYGQRfl67roAQ6bMcD394R9D6ce3LuLzcHgDuMhhgj9fL-Oc0X-feQIKyGRKqUS3IBegRzkVCG6OW_pxJfg0GMG9SNQFwI1gP53GrTusbDuW4tHPu19sburG9h3QQ4Ojy--eeJfvqyBGZlbEJpA_zo0OD0NsJldH4Fs1WSbbfNsfM34KruDnbwt_tg-TpejKbJLJ-8jbJZ4rDCJDGVTrnFyhBS8pIRLRUtS6QrLVmqUkxkKlhJsa2RYroivMZccV51iTBKpLQP7s9_m9i6IhrXWrM2jffWtAVOJVJIdNDDGdqH5udgY1tsmkPwXa-CEMzYSU7U7Zly1tpiH9xOh2MhBceUSPoLBwhk0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214422146</pqid></control><display><type>article</type><title>Reaction Rate Enhancement for Cu(In,Ga)Se2 Absorber Materials Using Ag-Alloying</title><source>IEEE Electronic Library (IEL)</source><creator>Soltanmohammad, Sina ; Tong, Ho Ming ; Anderson, Timothy J. ; Shafarman, William N.</creator><creatorcontrib>Soltanmohammad, Sina ; Tong, Ho Ming ; Anderson, Timothy J. ; Shafarman, William N. ; Univ. of Delaware, Newark, DE (United States)</creatorcontrib><description>The addition of Ag to Cu-Ga-In precursors for synthesizing (Ag,Cu)(In,Ga)Se 2 (ACIGS) thin films has shown benefits including improved adhesion, greater process tolerance, and potential for improved device performance. In this study, reaction pathways to form Cu(In,Ga)Se 2 (CIGS) and ACIGS were studied by time-progressive reactions at 450 °C in a 5% Ar/H 2 Se atmosphere followed by ex situ characterization. Results indicated that the addition of 25% Ag/(Ag+Cu) to the CIGS film reduces the reaction time by 50%. X-ray diffraction (XRD) analysis of CIGS films showed that the CuInSe 2 phase initially formed after 3.5 min. The slow reaction of the stable γ-Cu 9 (In,Ga) 4 phase, however, required more than 20 min to complete. Importantly, the addition of Ag to the CIGS film accelerated the reaction. Energy-dispersive X-ray spectroscopy shows that Ga/(Ga+In) grading occurs in the first 10 min of the reaction. XRD analysis showed that the chalcopyrite phase fully forms after 10 min and no significant changes were observed in samples selenized from 10-45 min. Reaction pathways of Ag-alloyed films were further characterized using in situ high temperature XRD analysis. The onset temperature of Se reaction was detected at 230 °C and a AgIn 2 phase transformation to (Ag,Cu)In 2 occurred during the early stage of the reaction.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2897582</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorbers (materials) ; Ag ; Chalcopyrite ; Copper indium gallium selenides ; Copper indium selenides ; Cu)(In ; Energy dispersive X ray spectroscopy ; Ga)Se2 ; High temperature ; Inductors ; MATERIALS SCIENCE ; Metals ; Performance evaluation ; Phase transitions ; photovoltaic materials ; Photovoltaic systems ; reaction pathway ; Reaction time ; Selenium ; selenization ; Silver ; Temperature measurement ; Thin films ; X-ray diffraction ; X-ray scattering</subject><ispartof>IEEE journal of photovoltaics, 2019-05, Vol.9 (3), p.898-905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1976-1163 ; 0000000219761163 ; 0000000289374775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8651328$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8651328$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1780906$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soltanmohammad, Sina</creatorcontrib><creatorcontrib>Tong, Ho Ming</creatorcontrib><creatorcontrib>Anderson, Timothy J.</creatorcontrib><creatorcontrib>Shafarman, William N.</creatorcontrib><creatorcontrib>Univ. of Delaware, Newark, DE (United States)</creatorcontrib><title>Reaction Rate Enhancement for Cu(In,Ga)Se2 Absorber Materials Using Ag-Alloying</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The addition of Ag to Cu-Ga-In precursors for synthesizing (Ag,Cu)(In,Ga)Se 2 (ACIGS) thin films has shown benefits including improved adhesion, greater process tolerance, and potential for improved device performance. In this study, reaction pathways to form Cu(In,Ga)Se 2 (CIGS) and ACIGS were studied by time-progressive reactions at 450 °C in a 5% Ar/H 2 Se atmosphere followed by ex situ characterization. Results indicated that the addition of 25% Ag/(Ag+Cu) to the CIGS film reduces the reaction time by 50%. X-ray diffraction (XRD) analysis of CIGS films showed that the CuInSe 2 phase initially formed after 3.5 min. The slow reaction of the stable γ-Cu 9 (In,Ga) 4 phase, however, required more than 20 min to complete. Importantly, the addition of Ag to the CIGS film accelerated the reaction. Energy-dispersive X-ray spectroscopy shows that Ga/(Ga+In) grading occurs in the first 10 min of the reaction. XRD analysis showed that the chalcopyrite phase fully forms after 10 min and no significant changes were observed in samples selenized from 10-45 min. Reaction pathways of Ag-alloyed films were further characterized using in situ high temperature XRD analysis. The onset temperature of Se reaction was detected at 230 °C and a AgIn 2 phase transformation to (Ag,Cu)In 2 occurred during the early stage of the reaction.</description><subject>Absorbers (materials)</subject><subject>Ag</subject><subject>Chalcopyrite</subject><subject>Copper indium gallium selenides</subject><subject>Copper indium selenides</subject><subject>Cu)(In</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Ga)Se2</subject><subject>High temperature</subject><subject>Inductors</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>Performance evaluation</subject><subject>Phase transitions</subject><subject>photovoltaic materials</subject><subject>Photovoltaic systems</subject><subject>reaction pathway</subject><subject>Reaction time</subject><subject>Selenium</subject><subject>selenization</subject><subject>Silver</subject><subject>Temperature measurement</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><subject>X-ray scattering</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo1jl9PwjAUxRujiQT5BPrQ6IsmDvt_7eNCEDSYGQRfl67roAQ6bMcD394R9D6ce3LuLzcHgDuMhhgj9fL-Oc0X-feQIKyGRKqUS3IBegRzkVCG6OW_pxJfg0GMG9SNQFwI1gP53GrTusbDuW4tHPu19sburG9h3QQ4Ojy--eeJfvqyBGZlbEJpA_zo0OD0NsJldH4Fs1WSbbfNsfM34KruDnbwt_tg-TpejKbJLJ-8jbJZ4rDCJDGVTrnFyhBS8pIRLRUtS6QrLVmqUkxkKlhJsa2RYroivMZccV51iTBKpLQP7s9_m9i6IhrXWrM2jffWtAVOJVJIdNDDGdqH5udgY1tsmkPwXa-CEMzYSU7U7Zly1tpiH9xOh2MhBceUSPoLBwhk0A</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Soltanmohammad, Sina</creator><creator>Tong, Ho Ming</creator><creator>Anderson, Timothy J.</creator><creator>Shafarman, William N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1976-1163</orcidid><orcidid>https://orcid.org/0000000219761163</orcidid><orcidid>https://orcid.org/0000000289374775</orcidid></search><sort><creationdate>20190501</creationdate><title>Reaction Rate Enhancement for Cu(In,Ga)Se2 Absorber Materials Using Ag-Alloying</title><author>Soltanmohammad, Sina ; Tong, Ho Ming ; Anderson, Timothy J. ; Shafarman, William N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1912-cda75e19c22b5b42a893bb0ada84797128764b31ef094ad25f15955d31e6c9673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers (materials)</topic><topic>Ag</topic><topic>Chalcopyrite</topic><topic>Copper indium gallium selenides</topic><topic>Copper indium selenides</topic><topic>Cu)(In</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Ga)Se2</topic><topic>High temperature</topic><topic>Inductors</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>Performance evaluation</topic><topic>Phase transitions</topic><topic>photovoltaic materials</topic><topic>Photovoltaic systems</topic><topic>reaction pathway</topic><topic>Reaction time</topic><topic>Selenium</topic><topic>selenization</topic><topic>Silver</topic><topic>Temperature measurement</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltanmohammad, Sina</creatorcontrib><creatorcontrib>Tong, Ho Ming</creatorcontrib><creatorcontrib>Anderson, Timothy J.</creatorcontrib><creatorcontrib>Shafarman, William N.</creatorcontrib><creatorcontrib>Univ. of Delaware, Newark, DE (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soltanmohammad, Sina</au><au>Tong, Ho Ming</au><au>Anderson, Timothy J.</au><au>Shafarman, William N.</au><aucorp>Univ. of Delaware, Newark, DE (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction Rate Enhancement for Cu(In,Ga)Se2 Absorber Materials Using Ag-Alloying</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>898</spage><epage>905</epage><pages>898-905</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The addition of Ag to Cu-Ga-In precursors for synthesizing (Ag,Cu)(In,Ga)Se 2 (ACIGS) thin films has shown benefits including improved adhesion, greater process tolerance, and potential for improved device performance. In this study, reaction pathways to form Cu(In,Ga)Se 2 (CIGS) and ACIGS were studied by time-progressive reactions at 450 °C in a 5% Ar/H 2 Se atmosphere followed by ex situ characterization. Results indicated that the addition of 25% Ag/(Ag+Cu) to the CIGS film reduces the reaction time by 50%. X-ray diffraction (XRD) analysis of CIGS films showed that the CuInSe 2 phase initially formed after 3.5 min. The slow reaction of the stable γ-Cu 9 (In,Ga) 4 phase, however, required more than 20 min to complete. Importantly, the addition of Ag to the CIGS film accelerated the reaction. Energy-dispersive X-ray spectroscopy shows that Ga/(Ga+In) grading occurs in the first 10 min of the reaction. XRD analysis showed that the chalcopyrite phase fully forms after 10 min and no significant changes were observed in samples selenized from 10-45 min. Reaction pathways of Ag-alloyed films were further characterized using in situ high temperature XRD analysis. The onset temperature of Se reaction was detected at 230 °C and a AgIn 2 phase transformation to (Ag,Cu)In 2 occurred during the early stage of the reaction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2897582</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1976-1163</orcidid><orcidid>https://orcid.org/0000000219761163</orcidid><orcidid>https://orcid.org/0000000289374775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2019-05, Vol.9 (3), p.898-905 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_osti_scitechconnect_1780906 |
source | IEEE Electronic Library (IEL) |
subjects | Absorbers (materials) Ag Chalcopyrite Copper indium gallium selenides Copper indium selenides Cu)(In Energy dispersive X ray spectroscopy Ga)Se2 High temperature Inductors MATERIALS SCIENCE Metals Performance evaluation Phase transitions photovoltaic materials Photovoltaic systems reaction pathway Reaction time Selenium selenization Silver Temperature measurement Thin films X-ray diffraction X-ray scattering |
title | Reaction Rate Enhancement for Cu(In,Ga)Se2 Absorber Materials Using Ag-Alloying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20Rate%20Enhancement%20for%20Cu(In,Ga)Se2%20Absorber%20Materials%20Using%20Ag-Alloying&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Soltanmohammad,%20Sina&rft.aucorp=Univ.%20of%20Delaware,%20Newark,%20DE%20(United%20States)&rft.date=2019-05-01&rft.volume=9&rft.issue=3&rft.spage=898&rft.epage=905&rft.pages=898-905&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2897582&rft_dat=%3Cproquest_RIE%3E2214422146%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214422146&rft_id=info:pmid/&rft_ieee_id=8651328&rfr_iscdi=true |