Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron–electron interactions. The instances in which topological phases emerge only as a result of strong interactions a...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-12, Vol.588 (7839), p.610-615 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 615 |
---|---|
container_issue | 7839 |
container_start_page | 610 |
container_title | Nature (London) |
container_volume | 588 |
creator | Nuckolls, Kevin P. Oh, Myungchul Wong, Dillon Lian, Biao Watanabe, Kenji Taniguchi, Takashi Bernevig, B. Andrei Yazdani, Ali |
description | Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron–electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields
1
. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases
2
–
9
. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers
C
= ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (
C
= +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role
9
. We demonstrate that strong electron–electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Strong electron–electron interactions in magic-angle twisted bilayer graphene can fundamentally change the topology of the system’s flat bands, producing a hierarchy of strongly correlated topological insulators in modest magnetic fields. |
doi_str_mv | 10.1038/s41586-020-3028-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1780898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649645948</galeid><sourcerecordid>A649645948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c677t-31dba3b0e0f538e218615316a9e7e42fb097431aaf4417593917f4995452c4b43</originalsourceid><addsrcrecordid>eNp10l2L1DAUBuAgijuu_gBvpKxXIl2TJs3H5TD4sTAouCtehjRz2snSSWeTFJ1_b0pX14FZCmmbPueQpC9Crwm-JJjKD5GRWvISV7ikuJKlfIIWhAleMi7FU7TA0ySWlJ-hFzHeYoxrIthzdEYpJZJLuUDr6xQG3_WHwg4hQG8SbIrVFoIvnI9jfh9CzI_FznTOliZTKNIvFyfXuN4cIBRdMPsteHiJnrWmj_Dq_n6Ofnz6eLP6Uq6_fb5aLdel5UKkkpJNY2iDAbc1lVDlpZCaEm4UCGBV22AlGCXGtIwRUSuqiGiZUjWrK8saRs_Rxdx3iMnpaF0Cu7WD92CTJkJiqWRGb2e0D8PdCDHp22EMPq9LV_mMOFF5eFCd6UE73w4pGLtz0eolZ4qzWrGpV3lCdXnLwfSDh9bl6SN_ccLbvbvT_6PLEyhfG9g5e7Lru6OCbBL8Tp0ZY9RX19-P7fvH7fLm5-rrsSaztmGIMUCr98HtTDhogvUUNT1HTeeo6Slqeqp5c3--Y7ODzb-Kv9nKoJpBzJ98B-HhBzze9Q9M5dgG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476619766</pqid></control><display><type>article</type><title>Strongly correlated Chern insulators in magic-angle twisted bilayer graphene</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nuckolls, Kevin P. ; Oh, Myungchul ; Wong, Dillon ; Lian, Biao ; Watanabe, Kenji ; Taniguchi, Takashi ; Bernevig, B. Andrei ; Yazdani, Ali</creator><creatorcontrib>Nuckolls, Kevin P. ; Oh, Myungchul ; Wong, Dillon ; Lian, Biao ; Watanabe, Kenji ; Taniguchi, Takashi ; Bernevig, B. Andrei ; Yazdani, Ali ; Princeton Univ., NJ (United States)</creatorcontrib><description>Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron–electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields
1
. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases
2
–
9
. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers
C
= ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (
C
= +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role
9
. We demonstrate that strong electron–electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Strong electron–electron interactions in magic-angle twisted bilayer graphene can fundamentally change the topology of the system’s flat bands, producing a hierarchy of strongly correlated topological insulators in modest magnetic fields.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-3028-8</identifier><identifier>PMID: 33318688</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2792/4128 ; 639/766/119/2793 ; 639/766/119/995 ; Bilayers ; Boron ; Boron nitride ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Correlation ; Electric insulators ; Electric properties ; Electronic properties and materials ; Electrons ; Energy bands ; Ferromagnetism ; Graphene ; Humanities and Social Sciences ; Insulators ; Magnetic fields ; multidisciplinary ; Phases ; Properties ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Substrates ; Symmetry ; Topological insulators ; Topology ; Unit cell</subject><ispartof>Nature (London), 2020-12, Vol.588 (7839), p.610-615</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 24-Dec 31, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c677t-31dba3b0e0f538e218615316a9e7e42fb097431aaf4417593917f4995452c4b43</citedby><cites>FETCH-LOGICAL-c677t-31dba3b0e0f538e218615316a9e7e42fb097431aaf4417593917f4995452c4b43</cites><orcidid>0000-0002-1467-3105 ; 0000-0002-8956-5619 ; 0000-0003-3701-8119 ; 0000-0003-0477-1390 ; 0000-0001-6337-4024 ; 0000-0002-1078-7113 ; 0000-0003-4996-8904 ; 0000000304771390 ; 0000000163374024 ; 0000000210787113 ; 0000000249314188 ; 0000000289565619 ; 0000000337018119 ; 0000000349968904 ; 0000000214673105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-3028-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-3028-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33318688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1780898$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nuckolls, Kevin P.</creatorcontrib><creatorcontrib>Oh, Myungchul</creatorcontrib><creatorcontrib>Wong, Dillon</creatorcontrib><creatorcontrib>Lian, Biao</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Bernevig, B. Andrei</creatorcontrib><creatorcontrib>Yazdani, Ali</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Strongly correlated Chern insulators in magic-angle twisted bilayer graphene</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron–electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields
1
. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases
2
–
9
. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers
C
= ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (
C
= +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role
9
. We demonstrate that strong electron–electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Strong electron–electron interactions in magic-angle twisted bilayer graphene can fundamentally change the topology of the system’s flat bands, producing a hierarchy of strongly correlated topological insulators in modest magnetic fields.</description><subject>639/766/119/2792/4128</subject><subject>639/766/119/2793</subject><subject>639/766/119/995</subject><subject>Bilayers</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Correlation</subject><subject>Electric insulators</subject><subject>Electric properties</subject><subject>Electronic properties and materials</subject><subject>Electrons</subject><subject>Energy bands</subject><subject>Ferromagnetism</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Insulators</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Phases</subject><subject>Properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Symmetry</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Unit cell</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l2L1DAUBuAgijuu_gBvpKxXIl2TJs3H5TD4sTAouCtehjRz2snSSWeTFJ1_b0pX14FZCmmbPueQpC9Crwm-JJjKD5GRWvISV7ikuJKlfIIWhAleMi7FU7TA0ySWlJ-hFzHeYoxrIthzdEYpJZJLuUDr6xQG3_WHwg4hQG8SbIrVFoIvnI9jfh9CzI_FznTOliZTKNIvFyfXuN4cIBRdMPsteHiJnrWmj_Dq_n6Ofnz6eLP6Uq6_fb5aLdel5UKkkpJNY2iDAbc1lVDlpZCaEm4UCGBV22AlGCXGtIwRUSuqiGiZUjWrK8saRs_Rxdx3iMnpaF0Cu7WD92CTJkJiqWRGb2e0D8PdCDHp22EMPq9LV_mMOFF5eFCd6UE73w4pGLtz0eolZ4qzWrGpV3lCdXnLwfSDh9bl6SN_ccLbvbvT_6PLEyhfG9g5e7Lru6OCbBL8Tp0ZY9RX19-P7fvH7fLm5-rrsSaztmGIMUCr98HtTDhogvUUNT1HTeeo6Slqeqp5c3--Y7ODzb-Kv9nKoJpBzJ98B-HhBzze9Q9M5dgG</recordid><startdate>20201224</startdate><enddate>20201224</enddate><creator>Nuckolls, Kevin P.</creator><creator>Oh, Myungchul</creator><creator>Wong, Dillon</creator><creator>Lian, Biao</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Bernevig, B. Andrei</creator><creator>Yazdani, Ali</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8956-5619</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0477-1390</orcidid><orcidid>https://orcid.org/0000-0001-6337-4024</orcidid><orcidid>https://orcid.org/0000-0002-1078-7113</orcidid><orcidid>https://orcid.org/0000-0003-4996-8904</orcidid><orcidid>https://orcid.org/0000000304771390</orcidid><orcidid>https://orcid.org/0000000163374024</orcidid><orcidid>https://orcid.org/0000000210787113</orcidid><orcidid>https://orcid.org/0000000249314188</orcidid><orcidid>https://orcid.org/0000000289565619</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000349968904</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid></search><sort><creationdate>20201224</creationdate><title>Strongly correlated Chern insulators in magic-angle twisted bilayer graphene</title><author>Nuckolls, Kevin P. ; Oh, Myungchul ; Wong, Dillon ; Lian, Biao ; Watanabe, Kenji ; Taniguchi, Takashi ; Bernevig, B. Andrei ; Yazdani, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c677t-31dba3b0e0f538e218615316a9e7e42fb097431aaf4417593917f4995452c4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/2792/4128</topic><topic>639/766/119/2793</topic><topic>639/766/119/995</topic><topic>Bilayers</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Correlation</topic><topic>Electric insulators</topic><topic>Electric properties</topic><topic>Electronic properties and materials</topic><topic>Electrons</topic><topic>Energy bands</topic><topic>Ferromagnetism</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Insulators</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Phases</topic><topic>Properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Symmetry</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nuckolls, Kevin P.</creatorcontrib><creatorcontrib>Oh, Myungchul</creatorcontrib><creatorcontrib>Wong, Dillon</creatorcontrib><creatorcontrib>Lian, Biao</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Bernevig, B. Andrei</creatorcontrib><creatorcontrib>Yazdani, Ali</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuckolls, Kevin P.</au><au>Oh, Myungchul</au><au>Wong, Dillon</au><au>Lian, Biao</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Bernevig, B. Andrei</au><au>Yazdani, Ali</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly correlated Chern insulators in magic-angle twisted bilayer graphene</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-12-24</date><risdate>2020</risdate><volume>588</volume><issue>7839</issue><spage>610</spage><epage>615</epage><pages>610-615</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron–electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields
1
. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases
2
–
9
. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers
C
= ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (
C
= +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role
9
. We demonstrate that strong electron–electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Strong electron–electron interactions in magic-angle twisted bilayer graphene can fundamentally change the topology of the system’s flat bands, producing a hierarchy of strongly correlated topological insulators in modest magnetic fields.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33318688</pmid><doi>10.1038/s41586-020-3028-8</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8956-5619</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0477-1390</orcidid><orcidid>https://orcid.org/0000-0001-6337-4024</orcidid><orcidid>https://orcid.org/0000-0002-1078-7113</orcidid><orcidid>https://orcid.org/0000-0003-4996-8904</orcidid><orcidid>https://orcid.org/0000000304771390</orcidid><orcidid>https://orcid.org/0000000163374024</orcidid><orcidid>https://orcid.org/0000000210787113</orcidid><orcidid>https://orcid.org/0000000249314188</orcidid><orcidid>https://orcid.org/0000000289565619</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000349968904</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-12, Vol.588 (7839), p.610-615 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1780898 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119/2792/4128 639/766/119/2793 639/766/119/995 Bilayers Boron Boron nitride CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Correlation Electric insulators Electric properties Electronic properties and materials Electrons Energy bands Ferromagnetism Graphene Humanities and Social Sciences Insulators Magnetic fields multidisciplinary Phases Properties Science Science (multidisciplinary) Spectrum analysis Substrates Symmetry Topological insulators Topology Unit cell |
title | Strongly correlated Chern insulators in magic-angle twisted bilayer graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20correlated%20Chern%20insulators%20in%20magic-angle%20twisted%20bilayer%20graphene&rft.jtitle=Nature%20(London)&rft.au=Nuckolls,%20Kevin%20P.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2020-12-24&rft.volume=588&rft.issue=7839&rft.spage=610&rft.epage=615&rft.pages=610-615&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-3028-8&rft_dat=%3Cgale_osti_%3EA649645948%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476619766&rft_id=info:pmid/33318688&rft_galeid=A649645948&rfr_iscdi=true |