Measuring cosmological distances using cluster edges as a standard ruler

ABSTRACT The line-of-sight velocity dispersion profile of galaxy clusters exhibits a ‘kink’ corresponding to the spatial extent of orbiting galaxies. Because the spatial extent of a cluster is correlated with the amplitude of the velocity dispersion profile, we can utilize this feature as a gravity-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-06, Vol.504 (2), p.1619-1626
Hauptverfasser: Wagoner, Erika L, Rozo, Eduardo, Aung, Han, Nagai, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1626
container_issue 2
container_start_page 1619
container_title Monthly notices of the Royal Astronomical Society
container_volume 504
creator Wagoner, Erika L
Rozo, Eduardo
Aung, Han
Nagai, Daisuke
description ABSTRACT The line-of-sight velocity dispersion profile of galaxy clusters exhibits a ‘kink’ corresponding to the spatial extent of orbiting galaxies. Because the spatial extent of a cluster is correlated with the amplitude of the velocity dispersion profile, we can utilize this feature as a gravity-calibrated standard ruler. Specifically, the amplitude of the velocity dispersion data allows us to infer the physical cluster size. Consequently, observations of the angular scale of the ‘kink’ in the profile can be translated into a distance measurement to the cluster. Assuming the relation between cluster radius and cluster velocity dispersion can be calibrated from simulations, we forecast that with existing data from the Sloan Digital Sky Survey we will be able to measure the Hubble constant with 3.0 per cent precision. Implementing our method with data from the Dark Energy Spectroscopic Instrument (DESI) will result in a 1.3 per cent measurement of the Hubble constant. Adding cosmological supernova data improves the uncertainty of the DESI measurement to 0.7 per cent. While these error estimates are statistical only, they provide strong motivation for pursuing the necessary simulation program required to characterize and calibrate the systematic uncertainties impacting our proposed measurement. Whether or not our proposed measurement can in fact result in competitive H0 constraints will depend on what the eventual systematics floor for this method is.
doi_str_mv 10.1093/mnras/stab1012
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_osti_scitechconnect_1779932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab1012</oup_id><sourcerecordid>3131024823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-89c182b57899d6a9153c1665ad763913939d0172c56f4bd06111b3da0d0ed9bc3</originalsourceid><addsrcrecordid>eNqFkM1PwzAMxSMEEmNw5VzBiUO3OF7T5ogmYEhDXOAcpUk2OnXNiNMD_z3dB2ckS5bsn9-zHmO3wCfAFU63XTQ0pWRq4CDO2AhQFrlQUp6zEedY5FUJcMmuiDac8xkKOWKLN2-oj023zmygbWjDurGmzVwzCHXWU9bTYdn2lHzMvFsPMzNUtgeciS6LfevjNbtYmZb8zamP2efz08d8kS_fX17nj8vcoqhSXikLlaiLslLKSaOgQAtSFsaVEhWgQuU4lMIWcjWrHZcAUKMz3HHvVG1xzO6OuoFSo8k2ydsvG7rO26ShLJVCMUD3R2gXw3fvKelN6GM3_KURELiYVQIHanKkbAxE0a_0LjZbE380cL2PVB8i1X-RDgcPJ-9-9x_7CwnLeMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131024823</pqid></control><display><type>article</type><title>Measuring cosmological distances using cluster edges as a standard ruler</title><source>Oxford University Press Open Access</source><creator>Wagoner, Erika L ; Rozo, Eduardo ; Aung, Han ; Nagai, Daisuke</creator><creatorcontrib>Wagoner, Erika L ; Rozo, Eduardo ; Aung, Han ; Nagai, Daisuke</creatorcontrib><description>ABSTRACT The line-of-sight velocity dispersion profile of galaxy clusters exhibits a ‘kink’ corresponding to the spatial extent of orbiting galaxies. Because the spatial extent of a cluster is correlated with the amplitude of the velocity dispersion profile, we can utilize this feature as a gravity-calibrated standard ruler. Specifically, the amplitude of the velocity dispersion data allows us to infer the physical cluster size. Consequently, observations of the angular scale of the ‘kink’ in the profile can be translated into a distance measurement to the cluster. Assuming the relation between cluster radius and cluster velocity dispersion can be calibrated from simulations, we forecast that with existing data from the Sloan Digital Sky Survey we will be able to measure the Hubble constant with 3.0 per cent precision. Implementing our method with data from the Dark Energy Spectroscopic Instrument (DESI) will result in a 1.3 per cent measurement of the Hubble constant. Adding cosmological supernova data improves the uncertainty of the DESI measurement to 0.7 per cent. While these error estimates are statistical only, they provide strong motivation for pursuing the necessary simulation program required to characterize and calibrate the systematic uncertainties impacting our proposed measurement. Whether or not our proposed measurement can in fact result in competitive H0 constraints will depend on what the eventual systematics floor for this method is.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab1012</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Amplitudes ; Angular velocity ; Calibration ; Dark energy ; Distance measurement ; Error analysis ; Galactic clusters ; Galaxies ; Hubble constant ; Line of sight ; Sky surveys (astronomy) ; Uncertainty ; Velocity</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2021-06, Vol.504 (2), p.1619-1626</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-89c182b57899d6a9153c1665ad763913939d0172c56f4bd06111b3da0d0ed9bc3</citedby><cites>FETCH-LOGICAL-c328t-89c182b57899d6a9153c1665ad763913939d0172c56f4bd06111b3da0d0ed9bc3</cites><orcidid>0000-0002-6766-5942 ; 0000-0002-9461-944X ; 0000-0002-2153-6096 ; 0000000267665942 ; 000000029461944X ; 0000000221536096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab1012$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1779932$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagoner, Erika L</creatorcontrib><creatorcontrib>Rozo, Eduardo</creatorcontrib><creatorcontrib>Aung, Han</creatorcontrib><creatorcontrib>Nagai, Daisuke</creatorcontrib><title>Measuring cosmological distances using cluster edges as a standard ruler</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The line-of-sight velocity dispersion profile of galaxy clusters exhibits a ‘kink’ corresponding to the spatial extent of orbiting galaxies. Because the spatial extent of a cluster is correlated with the amplitude of the velocity dispersion profile, we can utilize this feature as a gravity-calibrated standard ruler. Specifically, the amplitude of the velocity dispersion data allows us to infer the physical cluster size. Consequently, observations of the angular scale of the ‘kink’ in the profile can be translated into a distance measurement to the cluster. Assuming the relation between cluster radius and cluster velocity dispersion can be calibrated from simulations, we forecast that with existing data from the Sloan Digital Sky Survey we will be able to measure the Hubble constant with 3.0 per cent precision. Implementing our method with data from the Dark Energy Spectroscopic Instrument (DESI) will result in a 1.3 per cent measurement of the Hubble constant. Adding cosmological supernova data improves the uncertainty of the DESI measurement to 0.7 per cent. While these error estimates are statistical only, they provide strong motivation for pursuing the necessary simulation program required to characterize and calibrate the systematic uncertainties impacting our proposed measurement. Whether or not our proposed measurement can in fact result in competitive H0 constraints will depend on what the eventual systematics floor for this method is.</description><subject>Amplitudes</subject><subject>Angular velocity</subject><subject>Calibration</subject><subject>Dark energy</subject><subject>Distance measurement</subject><subject>Error analysis</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Hubble constant</subject><subject>Line of sight</subject><subject>Sky surveys (astronomy)</subject><subject>Uncertainty</subject><subject>Velocity</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PwzAMxSMEEmNw5VzBiUO3OF7T5ogmYEhDXOAcpUk2OnXNiNMD_z3dB2ckS5bsn9-zHmO3wCfAFU63XTQ0pWRq4CDO2AhQFrlQUp6zEedY5FUJcMmuiDac8xkKOWKLN2-oj023zmygbWjDurGmzVwzCHXWU9bTYdn2lHzMvFsPMzNUtgeciS6LfevjNbtYmZb8zamP2efz08d8kS_fX17nj8vcoqhSXikLlaiLslLKSaOgQAtSFsaVEhWgQuU4lMIWcjWrHZcAUKMz3HHvVG1xzO6OuoFSo8k2ydsvG7rO26ShLJVCMUD3R2gXw3fvKelN6GM3_KURELiYVQIHanKkbAxE0a_0LjZbE380cL2PVB8i1X-RDgcPJ-9-9x_7CwnLeMs</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Wagoner, Erika L</creator><creator>Rozo, Eduardo</creator><creator>Aung, Han</creator><creator>Nagai, Daisuke</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6766-5942</orcidid><orcidid>https://orcid.org/0000-0002-9461-944X</orcidid><orcidid>https://orcid.org/0000-0002-2153-6096</orcidid><orcidid>https://orcid.org/0000000267665942</orcidid><orcidid>https://orcid.org/000000029461944X</orcidid><orcidid>https://orcid.org/0000000221536096</orcidid></search><sort><creationdate>20210601</creationdate><title>Measuring cosmological distances using cluster edges as a standard ruler</title><author>Wagoner, Erika L ; Rozo, Eduardo ; Aung, Han ; Nagai, Daisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-89c182b57899d6a9153c1665ad763913939d0172c56f4bd06111b3da0d0ed9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Angular velocity</topic><topic>Calibration</topic><topic>Dark energy</topic><topic>Distance measurement</topic><topic>Error analysis</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Hubble constant</topic><topic>Line of sight</topic><topic>Sky surveys (astronomy)</topic><topic>Uncertainty</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagoner, Erika L</creatorcontrib><creatorcontrib>Rozo, Eduardo</creatorcontrib><creatorcontrib>Aung, Han</creatorcontrib><creatorcontrib>Nagai, Daisuke</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wagoner, Erika L</au><au>Rozo, Eduardo</au><au>Aung, Han</au><au>Nagai, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring cosmological distances using cluster edges as a standard ruler</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>504</volume><issue>2</issue><spage>1619</spage><epage>1626</epage><pages>1619-1626</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The line-of-sight velocity dispersion profile of galaxy clusters exhibits a ‘kink’ corresponding to the spatial extent of orbiting galaxies. Because the spatial extent of a cluster is correlated with the amplitude of the velocity dispersion profile, we can utilize this feature as a gravity-calibrated standard ruler. Specifically, the amplitude of the velocity dispersion data allows us to infer the physical cluster size. Consequently, observations of the angular scale of the ‘kink’ in the profile can be translated into a distance measurement to the cluster. Assuming the relation between cluster radius and cluster velocity dispersion can be calibrated from simulations, we forecast that with existing data from the Sloan Digital Sky Survey we will be able to measure the Hubble constant with 3.0 per cent precision. Implementing our method with data from the Dark Energy Spectroscopic Instrument (DESI) will result in a 1.3 per cent measurement of the Hubble constant. Adding cosmological supernova data improves the uncertainty of the DESI measurement to 0.7 per cent. While these error estimates are statistical only, they provide strong motivation for pursuing the necessary simulation program required to characterize and calibrate the systematic uncertainties impacting our proposed measurement. Whether or not our proposed measurement can in fact result in competitive H0 constraints will depend on what the eventual systematics floor for this method is.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stab1012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6766-5942</orcidid><orcidid>https://orcid.org/0000-0002-9461-944X</orcidid><orcidid>https://orcid.org/0000-0002-2153-6096</orcidid><orcidid>https://orcid.org/0000000267665942</orcidid><orcidid>https://orcid.org/000000029461944X</orcidid><orcidid>https://orcid.org/0000000221536096</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-06, Vol.504 (2), p.1619-1626
issn 0035-8711
1365-2966
language eng
recordid cdi_osti_scitechconnect_1779932
source Oxford University Press Open Access
subjects Amplitudes
Angular velocity
Calibration
Dark energy
Distance measurement
Error analysis
Galactic clusters
Galaxies
Hubble constant
Line of sight
Sky surveys (astronomy)
Uncertainty
Velocity
title Measuring cosmological distances using cluster edges as a standard ruler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20cosmological%20distances%20using%20cluster%20edges%20as%20a%20standard%20ruler&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Wagoner,%20Erika%20L&rft.date=2021-06-01&rft.volume=504&rft.issue=2&rft.spage=1619&rft.epage=1626&rft.pages=1619-1626&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab1012&rft_dat=%3Cproquest_TOX%3E3131024823%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131024823&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab1012&rfr_iscdi=true