Measuring cosmological distances using cluster edges as a standard ruler

ABSTRACT The line-of-sight velocity dispersion profile of galaxy clusters exhibits a ‘kink’ corresponding to the spatial extent of orbiting galaxies. Because the spatial extent of a cluster is correlated with the amplitude of the velocity dispersion profile, we can utilize this feature as a gravity-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-06, Vol.504 (2), p.1619-1626
Hauptverfasser: Wagoner, Erika L, Rozo, Eduardo, Aung, Han, Nagai, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The line-of-sight velocity dispersion profile of galaxy clusters exhibits a ‘kink’ corresponding to the spatial extent of orbiting galaxies. Because the spatial extent of a cluster is correlated with the amplitude of the velocity dispersion profile, we can utilize this feature as a gravity-calibrated standard ruler. Specifically, the amplitude of the velocity dispersion data allows us to infer the physical cluster size. Consequently, observations of the angular scale of the ‘kink’ in the profile can be translated into a distance measurement to the cluster. Assuming the relation between cluster radius and cluster velocity dispersion can be calibrated from simulations, we forecast that with existing data from the Sloan Digital Sky Survey we will be able to measure the Hubble constant with 3.0 per cent precision. Implementing our method with data from the Dark Energy Spectroscopic Instrument (DESI) will result in a 1.3 per cent measurement of the Hubble constant. Adding cosmological supernova data improves the uncertainty of the DESI measurement to 0.7 per cent. While these error estimates are statistical only, they provide strong motivation for pursuing the necessary simulation program required to characterize and calibrate the systematic uncertainties impacting our proposed measurement. Whether or not our proposed measurement can in fact result in competitive H0 constraints will depend on what the eventual systematics floor for this method is.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab1012