Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth

Here, we present an automated and rapid method for nondestructive mapping of crystal grains in a rod-shaped sample. The approach was designed for application to in situ float-zone crystal growth experiments at an X-ray synchrotron source but could be useful in other applications. The methods have be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-05, Vol.33 (9), p.3359-3367
Hauptverfasser: Wright, Christopher J. “CJ”, Dooryhée, Eric, Pressley, Lucas A, Phelan, W. Adam, Khalifah, Peter G, Billinge, Simon J. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3367
container_issue 9
container_start_page 3359
container_title Chemistry of materials
container_volume 33
creator Wright, Christopher J. “CJ”
Dooryhée, Eric
Pressley, Lucas A
Phelan, W. Adam
Khalifah, Peter G
Billinge, Simon J. L
description Here, we present an automated and rapid method for nondestructive mapping of crystal grains in a rod-shaped sample. The approach was designed for application to in situ float-zone crystal growth experiments at an X-ray synchrotron source but could be useful in other applications. The methods have been tested on a TiO2 boule grown in an optical float-zone furnace. The approach applies a statistical filter to polycrystalline diffraction patterns on two-dimensional (2D) detectors to rapidly determine the degree of powder quality of the signal. When larger crystals emerge in the growth, their position, size, and shape can be tracked using an automated blob-tracking algorithm that follows individual Bragg peaks as a function of position in a grid scan, even when multiple crystals are contributing spots to diffraction images. This method is found to be robust as the same crystal shape can be independently reconstructed using different sets of Bragg reflections. Image segmentation methods are then used to map out the polycrystalline grains. We also note that other information about crystal quality, such as mosaicity or strain state, may be inferred and mapped from the intensity variation of the Bragg peaks at different locations within the sample.
doi_str_mv 10.1021/acs.chemmater.1c00602
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1779685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c16930820</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-3751501ecdfb93974db824fb02d0c3cebe9d494a438c055cbb4f368fe8b4e5d63</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKePIATvO0_apE0vZegcTBQ28TIkp6nt2JqRpIy9vR2b3np1Lv7vO5zzE3LPYMIgZY8awwQbu93qaP2EIUAO6QUZMZFCIgDSSzICWRYJL0R-TW5CWAOwQZUj8rVye-0rOu_oso09XR46bLyL3nX0Te92bfdNXU2n_hCi3tCl3ViM7RB-eIc2BBto1fsj9YvMvNvH5pZc1XoT7N15jsnny_Nq-pos3mfz6dMi0VlexiQrBBPALFa1KbOy4JWRKa8NpBVghtbYsuIl1zyTCEKgMbzOcllbabgVVZ6NycNprwuxVQHbaLFB13XDmYoVRZlLMUDiBKF3IXhbq51vt9ofFAN1rFANFaq_CtW5wsFjJ-8Yr13vu-GVf5wfd_l6tA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth</title><source>American Chemical Society Journals</source><creator>Wright, Christopher J. “CJ” ; Dooryhée, Eric ; Pressley, Lucas A ; Phelan, W. Adam ; Khalifah, Peter G ; Billinge, Simon J. L</creator><creatorcontrib>Wright, Christopher J. “CJ” ; Dooryhée, Eric ; Pressley, Lucas A ; Phelan, W. Adam ; Khalifah, Peter G ; Billinge, Simon J. L ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Stony Brook Univ., NY (United States)</creatorcontrib><description>Here, we present an automated and rapid method for nondestructive mapping of crystal grains in a rod-shaped sample. The approach was designed for application to in situ float-zone crystal growth experiments at an X-ray synchrotron source but could be useful in other applications. The methods have been tested on a TiO2 boule grown in an optical float-zone furnace. The approach applies a statistical filter to polycrystalline diffraction patterns on two-dimensional (2D) detectors to rapidly determine the degree of powder quality of the signal. When larger crystals emerge in the growth, their position, size, and shape can be tracked using an automated blob-tracking algorithm that follows individual Bragg peaks as a function of position in a grid scan, even when multiple crystals are contributing spots to diffraction images. This method is found to be robust as the same crystal shape can be independently reconstructed using different sets of Bragg reflections. Image segmentation methods are then used to map out the polycrystalline grains. We also note that other information about crystal quality, such as mosaicity or strain state, may be inferred and mapped from the intensity variation of the Bragg peaks at different locations within the sample.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c00602</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystal structure ; Crystallization ; Crystals ; Diffraction ; Grain ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2021-05, Vol.33 (9), p.3359-3367</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-3751501ecdfb93974db824fb02d0c3cebe9d494a438c055cbb4f368fe8b4e5d63</citedby><cites>FETCH-LOGICAL-a369t-3751501ecdfb93974db824fb02d0c3cebe9d494a438c055cbb4f368fe8b4e5d63</cites><orcidid>0000-0002-9734-4998 ; 0000-0001-8787-1965 ; 0000-0002-2216-0377 ; 0000000297344998 ; 0000000207653333 ; 0000000197058118 ; 0000000222160377 ; 0000000187871965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c00602$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c00602$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1779685$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wright, Christopher J. “CJ”</creatorcontrib><creatorcontrib>Dooryhée, Eric</creatorcontrib><creatorcontrib>Pressley, Lucas A</creatorcontrib><creatorcontrib>Phelan, W. Adam</creatorcontrib><creatorcontrib>Khalifah, Peter G</creatorcontrib><creatorcontrib>Billinge, Simon J. L</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><title>Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Here, we present an automated and rapid method for nondestructive mapping of crystal grains in a rod-shaped sample. The approach was designed for application to in situ float-zone crystal growth experiments at an X-ray synchrotron source but could be useful in other applications. The methods have been tested on a TiO2 boule grown in an optical float-zone furnace. The approach applies a statistical filter to polycrystalline diffraction patterns on two-dimensional (2D) detectors to rapidly determine the degree of powder quality of the signal. When larger crystals emerge in the growth, their position, size, and shape can be tracked using an automated blob-tracking algorithm that follows individual Bragg peaks as a function of position in a grid scan, even when multiple crystals are contributing spots to diffraction images. This method is found to be robust as the same crystal shape can be independently reconstructed using different sets of Bragg reflections. Image segmentation methods are then used to map out the polycrystalline grains. We also note that other information about crystal quality, such as mosaicity or strain state, may be inferred and mapped from the intensity variation of the Bragg peaks at different locations within the sample.</description><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Grain</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKePIATvO0_apE0vZegcTBQ28TIkp6nt2JqRpIy9vR2b3np1Lv7vO5zzE3LPYMIgZY8awwQbu93qaP2EIUAO6QUZMZFCIgDSSzICWRYJL0R-TW5CWAOwQZUj8rVye-0rOu_oso09XR46bLyL3nX0Te92bfdNXU2n_hCi3tCl3ViM7RB-eIc2BBto1fsj9YvMvNvH5pZc1XoT7N15jsnny_Nq-pos3mfz6dMi0VlexiQrBBPALFa1KbOy4JWRKa8NpBVghtbYsuIl1zyTCEKgMbzOcllbabgVVZ6NycNprwuxVQHbaLFB13XDmYoVRZlLMUDiBKF3IXhbq51vt9ofFAN1rFANFaq_CtW5wsFjJ-8Yr13vu-GVf5wfd_l6tA</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Wright, Christopher J. “CJ”</creator><creator>Dooryhée, Eric</creator><creator>Pressley, Lucas A</creator><creator>Phelan, W. Adam</creator><creator>Khalifah, Peter G</creator><creator>Billinge, Simon J. L</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9734-4998</orcidid><orcidid>https://orcid.org/0000-0001-8787-1965</orcidid><orcidid>https://orcid.org/0000-0002-2216-0377</orcidid><orcidid>https://orcid.org/0000000297344998</orcidid><orcidid>https://orcid.org/0000000207653333</orcidid><orcidid>https://orcid.org/0000000197058118</orcidid><orcidid>https://orcid.org/0000000222160377</orcidid><orcidid>https://orcid.org/0000000187871965</orcidid></search><sort><creationdate>20210511</creationdate><title>Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth</title><author>Wright, Christopher J. “CJ” ; Dooryhée, Eric ; Pressley, Lucas A ; Phelan, W. Adam ; Khalifah, Peter G ; Billinge, Simon J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-3751501ecdfb93974db824fb02d0c3cebe9d494a438c055cbb4f368fe8b4e5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Grain</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wright, Christopher J. “CJ”</creatorcontrib><creatorcontrib>Dooryhée, Eric</creatorcontrib><creatorcontrib>Pressley, Lucas A</creatorcontrib><creatorcontrib>Phelan, W. Adam</creatorcontrib><creatorcontrib>Khalifah, Peter G</creatorcontrib><creatorcontrib>Billinge, Simon J. L</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wright, Christopher J. “CJ”</au><au>Dooryhée, Eric</au><au>Pressley, Lucas A</au><au>Phelan, W. Adam</au><au>Khalifah, Peter G</au><au>Billinge, Simon J. L</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><aucorp>Stony Brook Univ., NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-05-11</date><risdate>2021</risdate><volume>33</volume><issue>9</issue><spage>3359</spage><epage>3367</epage><pages>3359-3367</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Here, we present an automated and rapid method for nondestructive mapping of crystal grains in a rod-shaped sample. The approach was designed for application to in situ float-zone crystal growth experiments at an X-ray synchrotron source but could be useful in other applications. The methods have been tested on a TiO2 boule grown in an optical float-zone furnace. The approach applies a statistical filter to polycrystalline diffraction patterns on two-dimensional (2D) detectors to rapidly determine the degree of powder quality of the signal. When larger crystals emerge in the growth, their position, size, and shape can be tracked using an automated blob-tracking algorithm that follows individual Bragg peaks as a function of position in a grid scan, even when multiple crystals are contributing spots to diffraction images. This method is found to be robust as the same crystal shape can be independently reconstructed using different sets of Bragg reflections. Image segmentation methods are then used to map out the polycrystalline grains. We also note that other information about crystal quality, such as mosaicity or strain state, may be inferred and mapped from the intensity variation of the Bragg peaks at different locations within the sample.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c00602</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9734-4998</orcidid><orcidid>https://orcid.org/0000-0001-8787-1965</orcidid><orcidid>https://orcid.org/0000-0002-2216-0377</orcidid><orcidid>https://orcid.org/0000000297344998</orcidid><orcidid>https://orcid.org/0000000207653333</orcidid><orcidid>https://orcid.org/0000000197058118</orcidid><orcidid>https://orcid.org/0000000222160377</orcidid><orcidid>https://orcid.org/0000000187871965</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-05, Vol.33 (9), p.3359-3367
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1779685
source American Chemical Society Journals
subjects Crystal structure
Crystallization
Crystals
Diffraction
Grain
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
title Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20In%20Situ%20Synchrotron%20Mapping%20of%20Crystal%20Selection%20Processes%20during%20Crystal%20Growth&rft.jtitle=Chemistry%20of%20materials&rft.au=Wright,%20Christopher%20J.%20%E2%80%9CCJ%E2%80%9D&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-05-11&rft.volume=33&rft.issue=9&rft.spage=3359&rft.epage=3367&rft.pages=3359-3367&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c00602&rft_dat=%3Cacs_osti_%3Ec16930820%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true