Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions

Atmospheric nitrous oxide contributes directly to global warming, yet models of the nitrogen cycle do not account for bedrock, the largest pool of terrestrial nitrogen, as a source of nitrous oxide. Although it is known that release rates of nitrogen from bedrock are large, there is an incomplete un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2021-04, Vol.14 (4), p.217-224
Hauptverfasser: Wan, Jiamin, Tokunaga, Tetsu K., Brown, Wendy, Newman, Alexander W., Dong, Wenming, Bill, Markus, Beutler, Curtis A., Henderson, Amanda N., Harvey-Costello, Nydra, Conrad, Mark E., Bouskill, Nicholas J., Hubbard, Susan S., Williams, Kenneth H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 4
container_start_page 217
container_title Nature geoscience
container_volume 14
creator Wan, Jiamin
Tokunaga, Tetsu K.
Brown, Wendy
Newman, Alexander W.
Dong, Wenming
Bill, Markus
Beutler, Curtis A.
Henderson, Amanda N.
Harvey-Costello, Nydra
Conrad, Mark E.
Bouskill, Nicholas J.
Hubbard, Susan S.
Williams, Kenneth H.
description Atmospheric nitrous oxide contributes directly to global warming, yet models of the nitrogen cycle do not account for bedrock, the largest pool of terrestrial nitrogen, as a source of nitrous oxide. Although it is known that release rates of nitrogen from bedrock are large, there is an incomplete understanding of the connection between bedrock-hosted nitrogen and atmospheric nitrous oxide. Here, we quantify nitrogen fluxes and mass balances at a hillslope underlain by marine shale. We found that, at this site, bedrock weathering contributes 78% of the subsurface reactive nitrogen, while atmospheric sources (commonly regarded as the sole sources of reactive nitrogen in pristine environments) account for only the remaining 22%. About 56% of the total subsurface reactive nitrogen denitrifies, including 14% emitted as nitrous oxide. The remaining reactive nitrogen discharges in porewaters to a floodplain where additional denitrification probably occurs. We also found that the release of bedrock nitrogen occurs primarily within the zone of the seasonally fluctuating water table and suggest that the accumulation of nitrate in the vadose zone, often attributed to fertilization and soil leaching, may also include contributions from weathered nitrogen-rich bedrock. Our hillslope study suggests that, under oxygenated and moisture-rich conditions, weathering of deep, nitrogen-rich bedrock makes an important contribution to the nitrogen cycle. Weathering of deep bedrock releases reactive nitrogen into the subsurface, which contributes to the flux of nitrous oxide to the atmosphere, according to a field study that combines soil, rock and groundwater data within a river catchment.
doi_str_mv 10.1038/s41561-021-00717-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1779275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509428283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-1e2186c1d49c44f73867fcc99dcc396e329f7c58d53bebd36ec20a1a21d6fcaf3</originalsourceid><addsrcrecordid>eNp9kMtOxDAMRSsEEsPAD7CKYF3Io22aJSBeEhIb2LCJMq47k4Fphjjl8fd0KIgdC8u2dO-VfbLsUPATwVV9SoUoK5FzORTXQud8K5sIXcqcG15v_861KXazPaIl5xUvdDnJns6xiQGe2Tu6tMDouzmD0KXoZ31CYikw6mfUx9YBsogOkn9D1vkUwxw75rpmXHpi4cM3yHDliXzoaD_bad0L4cFPn2aPV5cPFzf53f317cXZXe4KbVIuUIq6AtEUBoqi1aqudAtgTAOgTIVKmlZDWTelmuGsURWC5E44KZqqBdeqaXY05gZK3hL4hLAYfugQkhVaG6nLQXQ8itYxvPZIyS5DH7vhLitLbgpZy1oNKjmqIAaiiK1dR79y8dMKbjeg7QjaDqDtN2jLB5MaTbTe4MP4F_2P6wu3wIJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509428283</pqid></control><display><type>article</type><title>Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wan, Jiamin ; Tokunaga, Tetsu K. ; Brown, Wendy ; Newman, Alexander W. ; Dong, Wenming ; Bill, Markus ; Beutler, Curtis A. ; Henderson, Amanda N. ; Harvey-Costello, Nydra ; Conrad, Mark E. ; Bouskill, Nicholas J. ; Hubbard, Susan S. ; Williams, Kenneth H.</creator><creatorcontrib>Wan, Jiamin ; Tokunaga, Tetsu K. ; Brown, Wendy ; Newman, Alexander W. ; Dong, Wenming ; Bill, Markus ; Beutler, Curtis A. ; Henderson, Amanda N. ; Harvey-Costello, Nydra ; Conrad, Mark E. ; Bouskill, Nicholas J. ; Hubbard, Susan S. ; Williams, Kenneth H. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Atmospheric nitrous oxide contributes directly to global warming, yet models of the nitrogen cycle do not account for bedrock, the largest pool of terrestrial nitrogen, as a source of nitrous oxide. Although it is known that release rates of nitrogen from bedrock are large, there is an incomplete understanding of the connection between bedrock-hosted nitrogen and atmospheric nitrous oxide. Here, we quantify nitrogen fluxes and mass balances at a hillslope underlain by marine shale. We found that, at this site, bedrock weathering contributes 78% of the subsurface reactive nitrogen, while atmospheric sources (commonly regarded as the sole sources of reactive nitrogen in pristine environments) account for only the remaining 22%. About 56% of the total subsurface reactive nitrogen denitrifies, including 14% emitted as nitrous oxide. The remaining reactive nitrogen discharges in porewaters to a floodplain where additional denitrification probably occurs. We also found that the release of bedrock nitrogen occurs primarily within the zone of the seasonally fluctuating water table and suggest that the accumulation of nitrate in the vadose zone, often attributed to fertilization and soil leaching, may also include contributions from weathered nitrogen-rich bedrock. Our hillslope study suggests that, under oxygenated and moisture-rich conditions, weathering of deep, nitrogen-rich bedrock makes an important contribution to the nitrogen cycle. Weathering of deep bedrock releases reactive nitrogen into the subsurface, which contributes to the flux of nitrous oxide to the atmosphere, according to a field study that combines soil, rock and groundwater data within a river catchment.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-021-00717-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/47/4112 ; 704/2151/209 ; 704/242 ; 704/47/4112 ; Atmospheric models ; Bedrock ; Biological fertilization ; Catchment area ; Climate change ; Denitrification ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Fertilization ; Floodplains ; Fluxes ; Geochemistry ; Geology ; Geophysics/Geodesy ; GEOSCIENCES ; Global warming ; Groundwater ; Groundwater data ; Groundwater table ; Hydrologic data ; Leaching ; Nitrogen ; Nitrogen cycle ; Nitrous oxide ; Nitrous oxide emissions ; River catchments ; Sedimentary rocks ; Shale ; Soil ; Soils ; Vadose water ; Water table ; Weathering</subject><ispartof>Nature geoscience, 2021-04, Vol.14 (4), p.217-224</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-1e2186c1d49c44f73867fcc99dcc396e329f7c58d53bebd36ec20a1a21d6fcaf3</citedby><cites>FETCH-LOGICAL-a479t-1e2186c1d49c44f73867fcc99dcc396e329f7c58d53bebd36ec20a1a21d6fcaf3</cites><orcidid>0000-0003-0861-6128 ; 0000-0003-4847-5577 ; 0000-0002-6577-8724 ; 0000000348475577 ; 0000000265778724 ; 0000000308616128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-021-00717-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-021-00717-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1779275$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Tokunaga, Tetsu K.</creatorcontrib><creatorcontrib>Brown, Wendy</creatorcontrib><creatorcontrib>Newman, Alexander W.</creatorcontrib><creatorcontrib>Dong, Wenming</creatorcontrib><creatorcontrib>Bill, Markus</creatorcontrib><creatorcontrib>Beutler, Curtis A.</creatorcontrib><creatorcontrib>Henderson, Amanda N.</creatorcontrib><creatorcontrib>Harvey-Costello, Nydra</creatorcontrib><creatorcontrib>Conrad, Mark E.</creatorcontrib><creatorcontrib>Bouskill, Nicholas J.</creatorcontrib><creatorcontrib>Hubbard, Susan S.</creatorcontrib><creatorcontrib>Williams, Kenneth H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Atmospheric nitrous oxide contributes directly to global warming, yet models of the nitrogen cycle do not account for bedrock, the largest pool of terrestrial nitrogen, as a source of nitrous oxide. Although it is known that release rates of nitrogen from bedrock are large, there is an incomplete understanding of the connection between bedrock-hosted nitrogen and atmospheric nitrous oxide. Here, we quantify nitrogen fluxes and mass balances at a hillslope underlain by marine shale. We found that, at this site, bedrock weathering contributes 78% of the subsurface reactive nitrogen, while atmospheric sources (commonly regarded as the sole sources of reactive nitrogen in pristine environments) account for only the remaining 22%. About 56% of the total subsurface reactive nitrogen denitrifies, including 14% emitted as nitrous oxide. The remaining reactive nitrogen discharges in porewaters to a floodplain where additional denitrification probably occurs. We also found that the release of bedrock nitrogen occurs primarily within the zone of the seasonally fluctuating water table and suggest that the accumulation of nitrate in the vadose zone, often attributed to fertilization and soil leaching, may also include contributions from weathered nitrogen-rich bedrock. Our hillslope study suggests that, under oxygenated and moisture-rich conditions, weathering of deep, nitrogen-rich bedrock makes an important contribution to the nitrogen cycle. Weathering of deep bedrock releases reactive nitrogen into the subsurface, which contributes to the flux of nitrous oxide to the atmosphere, according to a field study that combines soil, rock and groundwater data within a river catchment.</description><subject>704/106/47/4112</subject><subject>704/2151/209</subject><subject>704/242</subject><subject>704/47/4112</subject><subject>Atmospheric models</subject><subject>Bedrock</subject><subject>Biological fertilization</subject><subject>Catchment area</subject><subject>Climate change</subject><subject>Denitrification</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Fertilization</subject><subject>Floodplains</subject><subject>Fluxes</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>GEOSCIENCES</subject><subject>Global warming</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>Groundwater table</subject><subject>Hydrologic data</subject><subject>Leaching</subject><subject>Nitrogen</subject><subject>Nitrogen cycle</subject><subject>Nitrous oxide</subject><subject>Nitrous oxide emissions</subject><subject>River catchments</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Soil</subject><subject>Soils</subject><subject>Vadose water</subject><subject>Water table</subject><subject>Weathering</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOxDAMRSsEEsPAD7CKYF3Io22aJSBeEhIb2LCJMq47k4Fphjjl8fd0KIgdC8u2dO-VfbLsUPATwVV9SoUoK5FzORTXQud8K5sIXcqcG15v_861KXazPaIl5xUvdDnJns6xiQGe2Tu6tMDouzmD0KXoZ31CYikw6mfUx9YBsogOkn9D1vkUwxw75rpmXHpi4cM3yHDliXzoaD_bad0L4cFPn2aPV5cPFzf53f317cXZXe4KbVIuUIq6AtEUBoqi1aqudAtgTAOgTIVKmlZDWTelmuGsURWC5E44KZqqBdeqaXY05gZK3hL4hLAYfugQkhVaG6nLQXQ8itYxvPZIyS5DH7vhLitLbgpZy1oNKjmqIAaiiK1dR79y8dMKbjeg7QjaDqDtN2jLB5MaTbTe4MP4F_2P6wu3wIJc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wan, Jiamin</creator><creator>Tokunaga, Tetsu K.</creator><creator>Brown, Wendy</creator><creator>Newman, Alexander W.</creator><creator>Dong, Wenming</creator><creator>Bill, Markus</creator><creator>Beutler, Curtis A.</creator><creator>Henderson, Amanda N.</creator><creator>Harvey-Costello, Nydra</creator><creator>Conrad, Mark E.</creator><creator>Bouskill, Nicholas J.</creator><creator>Hubbard, Susan S.</creator><creator>Williams, Kenneth H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000-0003-4847-5577</orcidid><orcidid>https://orcid.org/0000-0002-6577-8724</orcidid><orcidid>https://orcid.org/0000000348475577</orcidid><orcidid>https://orcid.org/0000000265778724</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid></search><sort><creationdate>20210401</creationdate><title>Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions</title><author>Wan, Jiamin ; Tokunaga, Tetsu K. ; Brown, Wendy ; Newman, Alexander W. ; Dong, Wenming ; Bill, Markus ; Beutler, Curtis A. ; Henderson, Amanda N. ; Harvey-Costello, Nydra ; Conrad, Mark E. ; Bouskill, Nicholas J. ; Hubbard, Susan S. ; Williams, Kenneth H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-1e2186c1d49c44f73867fcc99dcc396e329f7c58d53bebd36ec20a1a21d6fcaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106/47/4112</topic><topic>704/2151/209</topic><topic>704/242</topic><topic>704/47/4112</topic><topic>Atmospheric models</topic><topic>Bedrock</topic><topic>Biological fertilization</topic><topic>Catchment area</topic><topic>Climate change</topic><topic>Denitrification</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Fertilization</topic><topic>Floodplains</topic><topic>Fluxes</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>GEOSCIENCES</topic><topic>Global warming</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>Groundwater table</topic><topic>Hydrologic data</topic><topic>Leaching</topic><topic>Nitrogen</topic><topic>Nitrogen cycle</topic><topic>Nitrous oxide</topic><topic>Nitrous oxide emissions</topic><topic>River catchments</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Soil</topic><topic>Soils</topic><topic>Vadose water</topic><topic>Water table</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Tokunaga, Tetsu K.</creatorcontrib><creatorcontrib>Brown, Wendy</creatorcontrib><creatorcontrib>Newman, Alexander W.</creatorcontrib><creatorcontrib>Dong, Wenming</creatorcontrib><creatorcontrib>Bill, Markus</creatorcontrib><creatorcontrib>Beutler, Curtis A.</creatorcontrib><creatorcontrib>Henderson, Amanda N.</creatorcontrib><creatorcontrib>Harvey-Costello, Nydra</creatorcontrib><creatorcontrib>Conrad, Mark E.</creatorcontrib><creatorcontrib>Bouskill, Nicholas J.</creatorcontrib><creatorcontrib>Hubbard, Susan S.</creatorcontrib><creatorcontrib>Williams, Kenneth H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Jiamin</au><au>Tokunaga, Tetsu K.</au><au>Brown, Wendy</au><au>Newman, Alexander W.</au><au>Dong, Wenming</au><au>Bill, Markus</au><au>Beutler, Curtis A.</au><au>Henderson, Amanda N.</au><au>Harvey-Costello, Nydra</au><au>Conrad, Mark E.</au><au>Bouskill, Nicholas J.</au><au>Hubbard, Susan S.</au><au>Williams, Kenneth H.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>14</volume><issue>4</issue><spage>217</spage><epage>224</epage><pages>217-224</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Atmospheric nitrous oxide contributes directly to global warming, yet models of the nitrogen cycle do not account for bedrock, the largest pool of terrestrial nitrogen, as a source of nitrous oxide. Although it is known that release rates of nitrogen from bedrock are large, there is an incomplete understanding of the connection between bedrock-hosted nitrogen and atmospheric nitrous oxide. Here, we quantify nitrogen fluxes and mass balances at a hillslope underlain by marine shale. We found that, at this site, bedrock weathering contributes 78% of the subsurface reactive nitrogen, while atmospheric sources (commonly regarded as the sole sources of reactive nitrogen in pristine environments) account for only the remaining 22%. About 56% of the total subsurface reactive nitrogen denitrifies, including 14% emitted as nitrous oxide. The remaining reactive nitrogen discharges in porewaters to a floodplain where additional denitrification probably occurs. We also found that the release of bedrock nitrogen occurs primarily within the zone of the seasonally fluctuating water table and suggest that the accumulation of nitrate in the vadose zone, often attributed to fertilization and soil leaching, may also include contributions from weathered nitrogen-rich bedrock. Our hillslope study suggests that, under oxygenated and moisture-rich conditions, weathering of deep, nitrogen-rich bedrock makes an important contribution to the nitrogen cycle. Weathering of deep bedrock releases reactive nitrogen into the subsurface, which contributes to the flux of nitrous oxide to the atmosphere, according to a field study that combines soil, rock and groundwater data within a river catchment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-021-00717-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000-0003-4847-5577</orcidid><orcidid>https://orcid.org/0000-0002-6577-8724</orcidid><orcidid>https://orcid.org/0000000348475577</orcidid><orcidid>https://orcid.org/0000000265778724</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2021-04, Vol.14 (4), p.217-224
issn 1752-0894
1752-0908
language eng
recordid cdi_osti_scitechconnect_1779275
source SpringerLink Journals - AutoHoldings
subjects 704/106/47/4112
704/2151/209
704/242
704/47/4112
Atmospheric models
Bedrock
Biological fertilization
Catchment area
Climate change
Denitrification
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Fertilization
Floodplains
Fluxes
Geochemistry
Geology
Geophysics/Geodesy
GEOSCIENCES
Global warming
Groundwater
Groundwater data
Groundwater table
Hydrologic data
Leaching
Nitrogen
Nitrogen cycle
Nitrous oxide
Nitrous oxide emissions
River catchments
Sedimentary rocks
Shale
Soil
Soils
Vadose water
Water table
Weathering
title Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bedrock%20weathering%20contributes%20to%20subsurface%20reactive%20nitrogen%20and%20nitrous%20oxide%20emissions&rft.jtitle=Nature%20geoscience&rft.au=Wan,%20Jiamin&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-04-01&rft.volume=14&rft.issue=4&rft.spage=217&rft.epage=224&rft.pages=217-224&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-021-00717-0&rft_dat=%3Cproquest_osti_%3E2509428283%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509428283&rft_id=info:pmid/&rfr_iscdi=true