Non-static surfaces in MCNPX: The chopper extension

Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neutron research 2020-01, Vol.22 (2-3), p.191
Hauptverfasser: Grammer, Kyle B, Gallmeier, Franz X, Iverson, Erik B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2-3
container_start_page 191
container_title Journal of neutron research
container_volume 22
creator Grammer, Kyle B
Gallmeier, Franz X
Iverson, Erik B
description Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.
doi_str_mv 10.3233/JNR-200148
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1779158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452111609</sourcerecordid><originalsourceid>FETCH-LOGICAL-o140t-c254d7323701c0b804dadd7bae1da17bb7e7c58178f71ba820103cbb3fca90e43</originalsourceid><addsrcrecordid>eNotjstKxDAYRoMoOI5ufIKg62j-XJrUnRTHC2MVGcFdSdKUdpCkNin4-BbG1fctDoeD0CXQG844v32pPwijFIQ-QisQShFWSHm8fMo40VAUp-gspf2C8IKVK8TrGEjKJg8Op3nqjPMJDwG_VvX71x3e9R67Po6jn7D_zT6kIYZzdNKZ7-Qv_neNPjcPu-qJbN8en6v7LYkgaCaOSdGqJUtRcNRqKlrTtsoaD60BZa3yykkNSncKrNGMAuXOWt45U1Iv-BpdHbwx5aFJbsje9S6G4F1uQKkSpF6g6wM0TvFn9ik3-zhPYelqmJAMAApa8j_lOlCW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452111609</pqid></control><display><type>article</type><title>Non-static surfaces in MCNPX: The chopper extension</title><source>Sage IOS Press Publications</source><creator>Grammer, Kyle B ; Gallmeier, Franz X ; Iverson, Erik B</creator><creatorcontrib>Grammer, Kyle B ; Gallmeier, Franz X ; Iverson, Erik B ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.</description><identifier>ISSN: 1023-8166</identifier><identifier>ISSN: 1477-2655</identifier><identifier>EISSN: 1477-2655</identifier><identifier>DOI: 10.3233/JNR-200148</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Cold neutrons ; Kinematics ; Neutrons ; Rotation ; Single crystals ; Thermalization (energy absorption)</subject><ispartof>Journal of neutron research, 2020-01, Vol.22 (2-3), p.191</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000195390459 ; 000000027920705X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,314,780,784,789,885,23930,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1779158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grammer, Kyle B</creatorcontrib><creatorcontrib>Gallmeier, Franz X</creatorcontrib><creatorcontrib>Iverson, Erik B</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Non-static surfaces in MCNPX: The chopper extension</title><title>Journal of neutron research</title><description>Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.</description><subject>Cold neutrons</subject><subject>Kinematics</subject><subject>Neutrons</subject><subject>Rotation</subject><subject>Single crystals</subject><subject>Thermalization (energy absorption)</subject><issn>1023-8166</issn><issn>1477-2655</issn><issn>1477-2655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjstKxDAYRoMoOI5ufIKg62j-XJrUnRTHC2MVGcFdSdKUdpCkNin4-BbG1fctDoeD0CXQG844v32pPwijFIQ-QisQShFWSHm8fMo40VAUp-gspf2C8IKVK8TrGEjKJg8Op3nqjPMJDwG_VvX71x3e9R67Po6jn7D_zT6kIYZzdNKZ7-Qv_neNPjcPu-qJbN8en6v7LYkgaCaOSdGqJUtRcNRqKlrTtsoaD60BZa3yykkNSncKrNGMAuXOWt45U1Iv-BpdHbwx5aFJbsje9S6G4F1uQKkSpF6g6wM0TvFn9ik3-zhPYelqmJAMAApa8j_lOlCW</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Grammer, Kyle B</creator><creator>Gallmeier, Franz X</creator><creator>Iverson, Erik B</creator><general>IOS Press BV</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000195390459</orcidid><orcidid>https://orcid.org/000000027920705X</orcidid></search><sort><creationdate>20200101</creationdate><title>Non-static surfaces in MCNPX: The chopper extension</title><author>Grammer, Kyle B ; Gallmeier, Franz X ; Iverson, Erik B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o140t-c254d7323701c0b804dadd7bae1da17bb7e7c58178f71ba820103cbb3fca90e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cold neutrons</topic><topic>Kinematics</topic><topic>Neutrons</topic><topic>Rotation</topic><topic>Single crystals</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammer, Kyle B</creatorcontrib><creatorcontrib>Gallmeier, Franz X</creatorcontrib><creatorcontrib>Iverson, Erik B</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of neutron research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammer, Kyle B</au><au>Gallmeier, Franz X</au><au>Iverson, Erik B</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-static surfaces in MCNPX: The chopper extension</atitle><jtitle>Journal of neutron research</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>2-3</issue><spage>191</spage><pages>191-</pages><issn>1023-8166</issn><issn>1477-2655</issn><eissn>1477-2655</eissn><abstract>Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JNR-200148</doi><orcidid>https://orcid.org/0000000195390459</orcidid><orcidid>https://orcid.org/000000027920705X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1023-8166
ispartof Journal of neutron research, 2020-01, Vol.22 (2-3), p.191
issn 1023-8166
1477-2655
1477-2655
language eng
recordid cdi_osti_scitechconnect_1779158
source Sage IOS Press Publications
subjects Cold neutrons
Kinematics
Neutrons
Rotation
Single crystals
Thermalization (energy absorption)
title Non-static surfaces in MCNPX: The chopper extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-static%20surfaces%20in%20MCNPX:%20The%20chopper%20extension&rft.jtitle=Journal%20of%20neutron%20research&rft.au=Grammer,%20Kyle%20B&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-01-01&rft.volume=22&rft.issue=2-3&rft.spage=191&rft.pages=191-&rft.issn=1023-8166&rft.eissn=1477-2655&rft_id=info:doi/10.3233/JNR-200148&rft_dat=%3Cproquest_osti_%3E2452111609%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452111609&rft_id=info:pmid/&rfr_iscdi=true