Non-static surfaces in MCNPX: The chopper extension
Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addit...
Gespeichert in:
Veröffentlicht in: | Journal of neutron research 2020-01, Vol.22 (2-3), p.191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2-3 |
container_start_page | 191 |
container_title | Journal of neutron research |
container_volume | 22 |
creator | Grammer, Kyle B Gallmeier, Franz X Iverson, Erik B |
description | Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal. |
doi_str_mv | 10.3233/JNR-200148 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1779158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452111609</sourcerecordid><originalsourceid>FETCH-LOGICAL-o140t-c254d7323701c0b804dadd7bae1da17bb7e7c58178f71ba820103cbb3fca90e43</originalsourceid><addsrcrecordid>eNotjstKxDAYRoMoOI5ufIKg62j-XJrUnRTHC2MVGcFdSdKUdpCkNin4-BbG1fctDoeD0CXQG844v32pPwijFIQ-QisQShFWSHm8fMo40VAUp-gspf2C8IKVK8TrGEjKJg8Op3nqjPMJDwG_VvX71x3e9R67Po6jn7D_zT6kIYZzdNKZ7-Qv_neNPjcPu-qJbN8en6v7LYkgaCaOSdGqJUtRcNRqKlrTtsoaD60BZa3yykkNSncKrNGMAuXOWt45U1Iv-BpdHbwx5aFJbsje9S6G4F1uQKkSpF6g6wM0TvFn9ik3-zhPYelqmJAMAApa8j_lOlCW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452111609</pqid></control><display><type>article</type><title>Non-static surfaces in MCNPX: The chopper extension</title><source>Sage IOS Press Publications</source><creator>Grammer, Kyle B ; Gallmeier, Franz X ; Iverson, Erik B</creator><creatorcontrib>Grammer, Kyle B ; Gallmeier, Franz X ; Iverson, Erik B ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.</description><identifier>ISSN: 1023-8166</identifier><identifier>ISSN: 1477-2655</identifier><identifier>EISSN: 1477-2655</identifier><identifier>DOI: 10.3233/JNR-200148</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Cold neutrons ; Kinematics ; Neutrons ; Rotation ; Single crystals ; Thermalization (energy absorption)</subject><ispartof>Journal of neutron research, 2020-01, Vol.22 (2-3), p.191</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000195390459 ; 000000027920705X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,314,780,784,789,885,23930,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1779158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grammer, Kyle B</creatorcontrib><creatorcontrib>Gallmeier, Franz X</creatorcontrib><creatorcontrib>Iverson, Erik B</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Non-static surfaces in MCNPX: The chopper extension</title><title>Journal of neutron research</title><description>Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.</description><subject>Cold neutrons</subject><subject>Kinematics</subject><subject>Neutrons</subject><subject>Rotation</subject><subject>Single crystals</subject><subject>Thermalization (energy absorption)</subject><issn>1023-8166</issn><issn>1477-2655</issn><issn>1477-2655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjstKxDAYRoMoOI5ufIKg62j-XJrUnRTHC2MVGcFdSdKUdpCkNin4-BbG1fctDoeD0CXQG844v32pPwijFIQ-QisQShFWSHm8fMo40VAUp-gspf2C8IKVK8TrGEjKJg8Op3nqjPMJDwG_VvX71x3e9R67Po6jn7D_zT6kIYZzdNKZ7-Qv_neNPjcPu-qJbN8en6v7LYkgaCaOSdGqJUtRcNRqKlrTtsoaD60BZa3yykkNSncKrNGMAuXOWt45U1Iv-BpdHbwx5aFJbsje9S6G4F1uQKkSpF6g6wM0TvFn9ik3-zhPYelqmJAMAApa8j_lOlCW</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Grammer, Kyle B</creator><creator>Gallmeier, Franz X</creator><creator>Iverson, Erik B</creator><general>IOS Press BV</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000195390459</orcidid><orcidid>https://orcid.org/000000027920705X</orcidid></search><sort><creationdate>20200101</creationdate><title>Non-static surfaces in MCNPX: The chopper extension</title><author>Grammer, Kyle B ; Gallmeier, Franz X ; Iverson, Erik B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o140t-c254d7323701c0b804dadd7bae1da17bb7e7c58178f71ba820103cbb3fca90e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cold neutrons</topic><topic>Kinematics</topic><topic>Neutrons</topic><topic>Rotation</topic><topic>Single crystals</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammer, Kyle B</creatorcontrib><creatorcontrib>Gallmeier, Franz X</creatorcontrib><creatorcontrib>Iverson, Erik B</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of neutron research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammer, Kyle B</au><au>Gallmeier, Franz X</au><au>Iverson, Erik B</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-static surfaces in MCNPX: The chopper extension</atitle><jtitle>Journal of neutron research</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>2-3</issue><spage>191</spage><pages>191-</pages><issn>1023-8166</issn><issn>1477-2655</issn><eissn>1477-2655</eissn><abstract>Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JNR-200148</doi><orcidid>https://orcid.org/0000000195390459</orcidid><orcidid>https://orcid.org/000000027920705X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-8166 |
ispartof | Journal of neutron research, 2020-01, Vol.22 (2-3), p.191 |
issn | 1023-8166 1477-2655 1477-2655 |
language | eng |
recordid | cdi_osti_scitechconnect_1779158 |
source | Sage IOS Press Publications |
subjects | Cold neutrons Kinematics Neutrons Rotation Single crystals Thermalization (energy absorption) |
title | Non-static surfaces in MCNPX: The chopper extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-static%20surfaces%20in%20MCNPX:%20The%20chopper%20extension&rft.jtitle=Journal%20of%20neutron%20research&rft.au=Grammer,%20Kyle%20B&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-01-01&rft.volume=22&rft.issue=2-3&rft.spage=191&rft.pages=191-&rft.issn=1023-8166&rft.eissn=1477-2655&rft_id=info:doi/10.3233/JNR-200148&rft_dat=%3Cproquest_osti_%3E2452111609%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452111609&rft_id=info:pmid/&rfr_iscdi=true |