Computational general relativistic force-free electrodynamics: II. Characterization of numerical diffusivity

Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe’s most extreme flows of energy. The discretization of Maxwell’s equations – needed to make highly magnetized (astro)physical plasma amenable to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-03, Vol.647 (NA), p.A58
Hauptverfasser: Mahlmann, J. F., Aloy, M. A., Mewes, V., Cerdá-Durán, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue NA
container_start_page A58
container_title Astronomy and astrophysics (Berlin)
container_volume 647
creator Mahlmann, J. F.
Aloy, M. A.
Mewes, V.
Cerdá-Durán, P.
description Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe’s most extreme flows of energy. The discretization of Maxwell’s equations – needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling – introduces numerical diffusion. It acts as a source of dissipation independent of the system’s physical constituents. Understanding the numerical diffusion of scientific codes is the key to classifying their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion properties of our recently developed numerical tool for the simulation of general relativistic force-free electrodynamics by calibrating and comparing it with other strategies found in the literature. Our code correctly models smooth waves of highly magnetized plasma. We evaluate the limits of general relativistic force-free electrodynamics in the context of current sheets and tearing mode instabilities. We identify that the current parallel to the magnetic field ( j ∥ ), in combination with the breakdown of general relativistic force-free electrodynamics across current sheets, impairs the physical modeling of resistive instabilities. We find that at least eight numerical cells per characteristic size of interest (e.g., the wavelength in plasma waves or the transverse width of a current sheet) are needed to find consistency between resistivity of numerical and of physical origins. High-order discretization of the force-free current allows us to provide almost ideal orders of convergence for (smooth) plasma wave dynamics. The physical modeling of resistive layers requires suitable current prescriptions or a sub-grid modeling for the evolution of j ∥ .
doi_str_mv 10.1051/0004-6361/202038908
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1779128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_0004_6361_202038908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-362f9ea0518728ae33b0a090f70e52c89eb45b1fb795ee25c273b797600e06c83</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFd_gZfive4kafNx8CCLX7DgRc8hjRONtM2SVGH_vSkre3pnhpfh4SHkmsIthY6uAaBtBBd0zYABVxrUCaloy1kDshWnpDo2zslFzt9lZVTxitxt4rj7me0c4mSH-hMnTCUTDuX0G_IcXO1jctj4hFjjgG5O8WM_2TG4fEnOvB0yXv3nirw_Prxtnpvt69PL5n7bOMbE3HDBvEZbSJVkyiLnPVjQ4CVgx5zS2LddT30vdYfIOsckL7MUAAjCKb4iN4e_sQCZ7MKM7svFaSo0hkqpKVtK_FByKeac0JtdCqNNe0PBLJrMIsEsEsxRE_8DBxRaDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational general relativistic force-free electrodynamics: II. Characterization of numerical diffusivity</title><source>EDP Sciences</source><source>Free E-Journal (出版社公開部分のみ)</source><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><creator>Mahlmann, J. F. ; Aloy, M. A. ; Mewes, V. ; Cerdá-Durán, P.</creator><creatorcontrib>Mahlmann, J. F. ; Aloy, M. A. ; Mewes, V. ; Cerdá-Durán, P. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe’s most extreme flows of energy. The discretization of Maxwell’s equations – needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling – introduces numerical diffusion. It acts as a source of dissipation independent of the system’s physical constituents. Understanding the numerical diffusion of scientific codes is the key to classifying their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion properties of our recently developed numerical tool for the simulation of general relativistic force-free electrodynamics by calibrating and comparing it with other strategies found in the literature. Our code correctly models smooth waves of highly magnetized plasma. We evaluate the limits of general relativistic force-free electrodynamics in the context of current sheets and tearing mode instabilities. We identify that the current parallel to the magnetic field ( j ∥ ), in combination with the breakdown of general relativistic force-free electrodynamics across current sheets, impairs the physical modeling of resistive instabilities. We find that at least eight numerical cells per characteristic size of interest (e.g., the wavelength in plasma waves or the transverse width of a current sheet) are needed to find consistency between resistivity of numerical and of physical origins. High-order discretization of the force-free current allows us to provide almost ideal orders of convergence for (smooth) plasma wave dynamics. The physical modeling of resistive layers requires suitable current prescriptions or a sub-grid modeling for the evolution of j ∥ .</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202038908</identifier><language>eng</language><publisher>United States: EDP Sciences</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; magnetic fields ; numerical methods ; plasmas</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-03, Vol.647 (NA), p.A58</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-362f9ea0518728ae33b0a090f70e52c89eb45b1fb795ee25c273b797600e06c83</cites><orcidid>0000-0001-5869-8542 ; 0000-0002-5349-7116 ; 0000-0002-5552-7681 ; 0000-0003-4293-340X ; 0000000253497116 ; 000000034293340X ; 0000000158698542 ; 0000000255527681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1779128$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahlmann, J. F.</creatorcontrib><creatorcontrib>Aloy, M. A.</creatorcontrib><creatorcontrib>Mewes, V.</creatorcontrib><creatorcontrib>Cerdá-Durán, P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Computational general relativistic force-free electrodynamics: II. Characterization of numerical diffusivity</title><title>Astronomy and astrophysics (Berlin)</title><description>Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe’s most extreme flows of energy. The discretization of Maxwell’s equations – needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling – introduces numerical diffusion. It acts as a source of dissipation independent of the system’s physical constituents. Understanding the numerical diffusion of scientific codes is the key to classifying their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion properties of our recently developed numerical tool for the simulation of general relativistic force-free electrodynamics by calibrating and comparing it with other strategies found in the literature. Our code correctly models smooth waves of highly magnetized plasma. We evaluate the limits of general relativistic force-free electrodynamics in the context of current sheets and tearing mode instabilities. We identify that the current parallel to the magnetic field ( j ∥ ), in combination with the breakdown of general relativistic force-free electrodynamics across current sheets, impairs the physical modeling of resistive instabilities. We find that at least eight numerical cells per characteristic size of interest (e.g., the wavelength in plasma waves or the transverse width of a current sheet) are needed to find consistency between resistivity of numerical and of physical origins. High-order discretization of the force-free current allows us to provide almost ideal orders of convergence for (smooth) plasma wave dynamics. The physical modeling of resistive layers requires suitable current prescriptions or a sub-grid modeling for the evolution of j ∥ .</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>magnetic fields</subject><subject>numerical methods</subject><subject>plasmas</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMoWFd_gZfive4kafNx8CCLX7DgRc8hjRONtM2SVGH_vSkre3pnhpfh4SHkmsIthY6uAaBtBBd0zYABVxrUCaloy1kDshWnpDo2zslFzt9lZVTxitxt4rj7me0c4mSH-hMnTCUTDuX0G_IcXO1jctj4hFjjgG5O8WM_2TG4fEnOvB0yXv3nirw_Prxtnpvt69PL5n7bOMbE3HDBvEZbSJVkyiLnPVjQ4CVgx5zS2LddT30vdYfIOsckL7MUAAjCKb4iN4e_sQCZ7MKM7svFaSo0hkqpKVtK_FByKeac0JtdCqNNe0PBLJrMIsEsEsxRE_8DBxRaDA</recordid><startdate>20210308</startdate><enddate>20210308</enddate><creator>Mahlmann, J. F.</creator><creator>Aloy, M. A.</creator><creator>Mewes, V.</creator><creator>Cerdá-Durán, P.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5869-8542</orcidid><orcidid>https://orcid.org/0000-0002-5349-7116</orcidid><orcidid>https://orcid.org/0000-0002-5552-7681</orcidid><orcidid>https://orcid.org/0000-0003-4293-340X</orcidid><orcidid>https://orcid.org/0000000253497116</orcidid><orcidid>https://orcid.org/000000034293340X</orcidid><orcidid>https://orcid.org/0000000158698542</orcidid><orcidid>https://orcid.org/0000000255527681</orcidid></search><sort><creationdate>20210308</creationdate><title>Computational general relativistic force-free electrodynamics</title><author>Mahlmann, J. F. ; Aloy, M. A. ; Mewes, V. ; Cerdá-Durán, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-362f9ea0518728ae33b0a090f70e52c89eb45b1fb795ee25c273b797600e06c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>magnetic fields</topic><topic>numerical methods</topic><topic>plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahlmann, J. F.</creatorcontrib><creatorcontrib>Aloy, M. A.</creatorcontrib><creatorcontrib>Mewes, V.</creatorcontrib><creatorcontrib>Cerdá-Durán, P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahlmann, J. F.</au><au>Aloy, M. A.</au><au>Mewes, V.</au><au>Cerdá-Durán, P.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational general relativistic force-free electrodynamics: II. Characterization of numerical diffusivity</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-03-08</date><risdate>2021</risdate><volume>647</volume><issue>NA</issue><spage>A58</spage><pages>A58-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe’s most extreme flows of energy. The discretization of Maxwell’s equations – needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling – introduces numerical diffusion. It acts as a source of dissipation independent of the system’s physical constituents. Understanding the numerical diffusion of scientific codes is the key to classifying their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion properties of our recently developed numerical tool for the simulation of general relativistic force-free electrodynamics by calibrating and comparing it with other strategies found in the literature. Our code correctly models smooth waves of highly magnetized plasma. We evaluate the limits of general relativistic force-free electrodynamics in the context of current sheets and tearing mode instabilities. We identify that the current parallel to the magnetic field ( j ∥ ), in combination with the breakdown of general relativistic force-free electrodynamics across current sheets, impairs the physical modeling of resistive instabilities. We find that at least eight numerical cells per characteristic size of interest (e.g., the wavelength in plasma waves or the transverse width of a current sheet) are needed to find consistency between resistivity of numerical and of physical origins. High-order discretization of the force-free current allows us to provide almost ideal orders of convergence for (smooth) plasma wave dynamics. The physical modeling of resistive layers requires suitable current prescriptions or a sub-grid modeling for the evolution of j ∥ .</abstract><cop>United States</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202038908</doi><orcidid>https://orcid.org/0000-0001-5869-8542</orcidid><orcidid>https://orcid.org/0000-0002-5349-7116</orcidid><orcidid>https://orcid.org/0000-0002-5552-7681</orcidid><orcidid>https://orcid.org/0000-0003-4293-340X</orcidid><orcidid>https://orcid.org/0000000253497116</orcidid><orcidid>https://orcid.org/000000034293340X</orcidid><orcidid>https://orcid.org/0000000158698542</orcidid><orcidid>https://orcid.org/0000000255527681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2021-03, Vol.647 (NA), p.A58
issn 0004-6361
1432-0746
language eng
recordid cdi_osti_scitechconnect_1779128
source EDP Sciences; Free E-Journal (出版社公開部分のみ); EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX
subjects ASTRONOMY AND ASTROPHYSICS
magnetic fields
numerical methods
plasmas
title Computational general relativistic force-free electrodynamics: II. Characterization of numerical diffusivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20general%20relativistic%20force-free%20electrodynamics:%20II.%20Characterization%20of%20numerical%20diffusivity&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Mahlmann,%20J.%20F.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-03-08&rft.volume=647&rft.issue=NA&rft.spage=A58&rft.pages=A58-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202038908&rft_dat=%3Ccrossref_osti_%3E10_1051_0004_6361_202038908%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true