High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High-Entropy Engineering

We investigate the structural and physical properties of the AgSn m SbSe m+2 system with m = 1–20 (i.e., SnSe matrix and ∼5–50% AgSbSe2) from atomic, nano, and macro length scales. We find the 50:50 composition, with m = 1 (i.e., AgSnSbSe3), forms a stable cation-disordered cubic rock-salt p-type se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-09, Vol.142 (35), p.15187-15198
Hauptverfasser: Luo, Yubo, Hao, Shiqiang, Cai, Songting, Slade, Tyler J, Luo, Zhong Zhen, Dravid, Vinayak P, Wolverton, Chris, Yan, Qingyu, Kanatzidis, Mercouri G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the structural and physical properties of the AgSn m SbSe m+2 system with m = 1–20 (i.e., SnSe matrix and ∼5–50% AgSbSe2) from atomic, nano, and macro length scales. We find the 50:50 composition, with m = 1 (i.e., AgSnSbSe3), forms a stable cation-disordered cubic rock-salt p-type semiconductor with a special multi-peak electronic valence band structure. AgSnSbSe3 has an intrinsically low lattice thermal conductivity of ∼0.47 W m–1 K–1 at 673 K owing to the synergy of cation disorder, phonon anharmonicity, low phonon velocity, and low-frequency optical modes. Furthermore, Te alloying on Se sites creates a quinary high-entropy NaCl-type solid solution AgSnSbSe3‑x Te x with randomly disordered cations and anions. The extra point defects and lattice dislocations lead to glass-like lattice thermal conductivities of ∼0.32 W m–1 K–1 at 723 K and higher hole carrier concentration than AgSnSbSe3. Concurrently, the Te alloying promotes greater convergence of the multiple valence band maxima in AgSnSbSe1.5Te1.5, the composition with the highest configurational entropy. Facilitated by these favorable modifications, we achieve a high average power factor of ∼9.54 μW cm–1 K–2 (400–773 K), a peak thermoelectric figure of merit ZT of 1.14 at 723 K, and a high average ZT of ∼1.0 over a wide temperature range of 400–773 K in AgSnSbSe1.5Te1.5.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c07803