Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide

Incorporation of foreign elements into the cathode material is broadly adopted by both academia and industry to improve the battery performance. The lack of an in-depth understanding for the underlying mechanism, however, makes it a largely try-and-error process with unsatisfactory efficiency and ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano energy 2021-06, Vol.84, p.105926, Article 105926
Hauptverfasser: Qian, Guannan, Huang, Hai, Hou, Fuchen, Wang, Weina, Wang, Yong, Lin, Junhao, Lee, Sang-Jun, Yan, Hanfei, Chu, Yong S., Pianetta, Piero, Huang, Xiaojing, Ma, Zi-Feng, Li, Linsen, Liu, Yijin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105926
container_title Nano energy
container_volume 84
creator Qian, Guannan
Huang, Hai
Hou, Fuchen
Wang, Weina
Wang, Yong
Lin, Junhao
Lee, Sang-Jun
Yan, Hanfei
Chu, Yong S.
Pianetta, Piero
Huang, Xiaojing
Ma, Zi-Feng
Li, Linsen
Liu, Yijin
description Incorporation of foreign elements into the cathode material is broadly adopted by both academia and industry to improve the battery performance. The lack of an in-depth understanding for the underlying mechanism, however, makes it a largely try-and-error process with unsatisfactory efficiency and effectiveness. This is particularly true for the electrochemical reaction kinetics that is heterogeneous over a broad range of length scales and is determined collectively by the cathode’s electronic structure, lattice configuration, and micro-morphology. Here we unveiled a facet-dependent dopant segregation effect in Zr-modified single-crystal LiNi0.6Co0.2Mn0.2O2 cathode. By forming kinetically favored corners on the cathode particles, the presence of a trace amount of Zr critically modulates the mesoscale reaction kinetics. Our findings suggest that a delicately controlled dopant distribution is a viable strategy for designing the next-generation battery cathode with superior structural and chemical robustness. [Display omitted] •The impact of Zr modification on single crystalline NMC material was investigated from electrochemical kinetics perspective.•The facet dependent Zr distribution on the NMC particle can modulate the Li-ion diffusion pathways.•The electrochemical kinetically favored corners on the mesoscale were uncovered with advanced synchrotron imaging techniques.
doi_str_mv 10.1016/j.nanoen.2021.105926
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1778806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211285521001841</els_id><sourcerecordid>S2211285521001841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b27aa4c4131c907faf0fe5cb67cb3380bbad99d06786e69fe4b36c4be20379133</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0Aiar0DThY3FNsJ7GTCxKq-JMqcQDO1sbeFJfUrmxT0bcnJZzZy0q78400Q8gVZ0vOuLzZLj34gH4pmODjqW6FPCMzITgvRFPXF2SR0paNI2uuuJgR-4oDmuwOSG3Yg8804SbiBrILnu6C_RogY6I7TCEZGJBGBPP7_HQeszOJOk8HOGJES3MEn9zEYoaBhm9n8ZKc9zAkXPztOXl_uH9bPRXrl8fn1d26MKVqc9EJBVCZipfctEz10LMea9NJZbqybFjXgW1by6RqJMq2x6orpak6FGzkeVnOyfXkG1J2OhmX0XyY4P2YUHOlmobJUVRNIhNDShF7vY9uB_GoOdOnFvVWTy3qU4t6anHEbicMxwAHh_Hkj96gdfFkb4P73-AHvRWBKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide</title><source>Alma/SFX Local Collection</source><creator>Qian, Guannan ; Huang, Hai ; Hou, Fuchen ; Wang, Weina ; Wang, Yong ; Lin, Junhao ; Lee, Sang-Jun ; Yan, Hanfei ; Chu, Yong S. ; Pianetta, Piero ; Huang, Xiaojing ; Ma, Zi-Feng ; Li, Linsen ; Liu, Yijin</creator><creatorcontrib>Qian, Guannan ; Huang, Hai ; Hou, Fuchen ; Wang, Weina ; Wang, Yong ; Lin, Junhao ; Lee, Sang-Jun ; Yan, Hanfei ; Chu, Yong S. ; Pianetta, Piero ; Huang, Xiaojing ; Ma, Zi-Feng ; Li, Linsen ; Liu, Yijin ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Incorporation of foreign elements into the cathode material is broadly adopted by both academia and industry to improve the battery performance. The lack of an in-depth understanding for the underlying mechanism, however, makes it a largely try-and-error process with unsatisfactory efficiency and effectiveness. This is particularly true for the electrochemical reaction kinetics that is heterogeneous over a broad range of length scales and is determined collectively by the cathode’s electronic structure, lattice configuration, and micro-morphology. Here we unveiled a facet-dependent dopant segregation effect in Zr-modified single-crystal LiNi0.6Co0.2Mn0.2O2 cathode. By forming kinetically favored corners on the cathode particles, the presence of a trace amount of Zr critically modulates the mesoscale reaction kinetics. Our findings suggest that a delicately controlled dopant distribution is a viable strategy for designing the next-generation battery cathode with superior structural and chemical robustness. [Display omitted] •The impact of Zr modification on single crystalline NMC material was investigated from electrochemical kinetics perspective.•The facet dependent Zr distribution on the NMC particle can modulate the Li-ion diffusion pathways.•The electrochemical kinetically favored corners on the mesoscale were uncovered with advanced synchrotron imaging techniques.</description><identifier>ISSN: 2211-2855</identifier><identifier>DOI: 10.1016/j.nanoen.2021.105926</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Layered cathodes ; Lithium diffusion ; MATERIALS SCIENCE ; Mesoscale kinetics ; Transition metal oxides</subject><ispartof>Nano energy, 2021-06, Vol.84, p.105926, Article 105926</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b27aa4c4131c907faf0fe5cb67cb3380bbad99d06786e69fe4b36c4be20379133</citedby><cites>FETCH-LOGICAL-c379t-b27aa4c4131c907faf0fe5cb67cb3380bbad99d06786e69fe4b36c4be20379133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1778806$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Guannan</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Hou, Fuchen</creatorcontrib><creatorcontrib>Wang, Weina</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lin, Junhao</creatorcontrib><creatorcontrib>Lee, Sang-Jun</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Pianetta, Piero</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Ma, Zi-Feng</creatorcontrib><creatorcontrib>Li, Linsen</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide</title><title>Nano energy</title><description>Incorporation of foreign elements into the cathode material is broadly adopted by both academia and industry to improve the battery performance. The lack of an in-depth understanding for the underlying mechanism, however, makes it a largely try-and-error process with unsatisfactory efficiency and effectiveness. This is particularly true for the electrochemical reaction kinetics that is heterogeneous over a broad range of length scales and is determined collectively by the cathode’s electronic structure, lattice configuration, and micro-morphology. Here we unveiled a facet-dependent dopant segregation effect in Zr-modified single-crystal LiNi0.6Co0.2Mn0.2O2 cathode. By forming kinetically favored corners on the cathode particles, the presence of a trace amount of Zr critically modulates the mesoscale reaction kinetics. Our findings suggest that a delicately controlled dopant distribution is a viable strategy for designing the next-generation battery cathode with superior structural and chemical robustness. [Display omitted] •The impact of Zr modification on single crystalline NMC material was investigated from electrochemical kinetics perspective.•The facet dependent Zr distribution on the NMC particle can modulate the Li-ion diffusion pathways.•The electrochemical kinetically favored corners on the mesoscale were uncovered with advanced synchrotron imaging techniques.</description><subject>Layered cathodes</subject><subject>Lithium diffusion</subject><subject>MATERIALS SCIENCE</subject><subject>Mesoscale kinetics</subject><subject>Transition metal oxides</subject><issn>2211-2855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0Aiar0DThY3FNsJ7GTCxKq-JMqcQDO1sbeFJfUrmxT0bcnJZzZy0q78400Q8gVZ0vOuLzZLj34gH4pmODjqW6FPCMzITgvRFPXF2SR0paNI2uuuJgR-4oDmuwOSG3Yg8804SbiBrILnu6C_RogY6I7TCEZGJBGBPP7_HQeszOJOk8HOGJES3MEn9zEYoaBhm9n8ZKc9zAkXPztOXl_uH9bPRXrl8fn1d26MKVqc9EJBVCZipfctEz10LMea9NJZbqybFjXgW1by6RqJMq2x6orpak6FGzkeVnOyfXkG1J2OhmX0XyY4P2YUHOlmobJUVRNIhNDShF7vY9uB_GoOdOnFvVWTy3qU4t6anHEbicMxwAHh_Hkj96gdfFkb4P73-AHvRWBKg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qian, Guannan</creator><creator>Huang, Hai</creator><creator>Hou, Fuchen</creator><creator>Wang, Weina</creator><creator>Wang, Yong</creator><creator>Lin, Junhao</creator><creator>Lee, Sang-Jun</creator><creator>Yan, Hanfei</creator><creator>Chu, Yong S.</creator><creator>Pianetta, Piero</creator><creator>Huang, Xiaojing</creator><creator>Ma, Zi-Feng</creator><creator>Li, Linsen</creator><creator>Liu, Yijin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210601</creationdate><title>Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide</title><author>Qian, Guannan ; Huang, Hai ; Hou, Fuchen ; Wang, Weina ; Wang, Yong ; Lin, Junhao ; Lee, Sang-Jun ; Yan, Hanfei ; Chu, Yong S. ; Pianetta, Piero ; Huang, Xiaojing ; Ma, Zi-Feng ; Li, Linsen ; Liu, Yijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b27aa4c4131c907faf0fe5cb67cb3380bbad99d06786e69fe4b36c4be20379133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Layered cathodes</topic><topic>Lithium diffusion</topic><topic>MATERIALS SCIENCE</topic><topic>Mesoscale kinetics</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Guannan</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Hou, Fuchen</creatorcontrib><creatorcontrib>Wang, Weina</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lin, Junhao</creatorcontrib><creatorcontrib>Lee, Sang-Jun</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Pianetta, Piero</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Ma, Zi-Feng</creatorcontrib><creatorcontrib>Li, Linsen</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Guannan</au><au>Huang, Hai</au><au>Hou, Fuchen</au><au>Wang, Weina</au><au>Wang, Yong</au><au>Lin, Junhao</au><au>Lee, Sang-Jun</au><au>Yan, Hanfei</au><au>Chu, Yong S.</au><au>Pianetta, Piero</au><au>Huang, Xiaojing</au><au>Ma, Zi-Feng</au><au>Li, Linsen</au><au>Liu, Yijin</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide</atitle><jtitle>Nano energy</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>84</volume><spage>105926</spage><pages>105926-</pages><artnum>105926</artnum><issn>2211-2855</issn><abstract>Incorporation of foreign elements into the cathode material is broadly adopted by both academia and industry to improve the battery performance. The lack of an in-depth understanding for the underlying mechanism, however, makes it a largely try-and-error process with unsatisfactory efficiency and effectiveness. This is particularly true for the electrochemical reaction kinetics that is heterogeneous over a broad range of length scales and is determined collectively by the cathode’s electronic structure, lattice configuration, and micro-morphology. Here we unveiled a facet-dependent dopant segregation effect in Zr-modified single-crystal LiNi0.6Co0.2Mn0.2O2 cathode. By forming kinetically favored corners on the cathode particles, the presence of a trace amount of Zr critically modulates the mesoscale reaction kinetics. Our findings suggest that a delicately controlled dopant distribution is a viable strategy for designing the next-generation battery cathode with superior structural and chemical robustness. [Display omitted] •The impact of Zr modification on single crystalline NMC material was investigated from electrochemical kinetics perspective.•The facet dependent Zr distribution on the NMC particle can modulate the Li-ion diffusion pathways.•The electrochemical kinetically favored corners on the mesoscale were uncovered with advanced synchrotron imaging techniques.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nanoen.2021.105926</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-2855
ispartof Nano energy, 2021-06, Vol.84, p.105926, Article 105926
issn 2211-2855
language eng
recordid cdi_osti_scitechconnect_1778806
source Alma/SFX Local Collection
subjects Layered cathodes
Lithium diffusion
MATERIALS SCIENCE
Mesoscale kinetics
Transition metal oxides
title Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20dopant%20segregation%20modulates%20mesoscale%20reaction%20kinetics%20in%20layered%20transition%20metal%20oxide&rft.jtitle=Nano%20energy&rft.au=Qian,%20Guannan&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-06-01&rft.volume=84&rft.spage=105926&rft.pages=105926-&rft.artnum=105926&rft.issn=2211-2855&rft_id=info:doi/10.1016/j.nanoen.2021.105926&rft_dat=%3Celsevier_osti_%3ES2211285521001841%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2211285521001841&rfr_iscdi=true