Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation

•Traditional kernel density estimation uses assumed kernel function form (e.g., Gaussian).•A more intuitive approach uses a kernel that is the shape of the underlying data density.•An iterative, machine learning approach learns the shape of the kernel by using the evolving estimated density.•Our app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2021-06, Vol.152, p.103889, Article 103889
Hauptverfasser: Benson, David A., Bolster, Diogo, Pankavich, Stephen, Schmidt, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103889
container_title Advances in water resources
container_volume 152
creator Benson, David A.
Bolster, Diogo
Pankavich, Stephen
Schmidt, Michael J.
description •Traditional kernel density estimation uses assumed kernel function form (e.g., Gaussian).•A more intuitive approach uses a kernel that is the shape of the underlying data density.•An iterative, machine learning approach learns the shape of the kernel by using the evolving estimated density.•Our approach has lower error than traditional methods when applied to a range of known densities.•When applied to particle arrival times, the new approach smoothly interpolates and extrapolates the BTC. Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the Green’s function of an underlying PDE. As such, each particle is a sample from the Green’s function; therefore, each particle should be distributed according to the Green’s function. In short, the kernel of a convolutional interpolation of the particle sample “cloud” should be a replica of the cloud itself. This idea gives rise to an iterative method by which the form of the kernel may be discerned in the process of interpolating the Green’s function. When the Green’s function is a density, this method is broadly applicable to interpolating a kernel density estimate based on random data drawn from a single distribution. We formulate and construct the algorithm and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including breakthrough curves.
doi_str_mv 10.1016/j.advwatres.2021.103889
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1778025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170821000440</els_id><sourcerecordid>S0309170821000440</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-f757a4482eb62220ed453702051e2f0451da18be62f9b0584a5bde05ddcdfde83</originalsourceid><addsrcrecordid>eNqFkE9PwzAMxSMEEmPwGag40-GkTZMdp4l_0gQXOEdp4kK2Lp2SMLRvT0vRrpws2b_nZz9CrinMKNDqbj3Tdv-tU8A4Y8Bo3y2knJ-QCZWC5fOKi1MygQLmORUgz8lFjGsAkKVgE-JfOr_TQW8xBWduM6uTzmsd0WYbDB7bzPmEYde1OrnOZ00Xsp5PzrSYp6DNxvmPLLrt1wjETPuj1KKPLh0yjMltf8eX5KzRbcSrvzol7w_3b8unfPX6-LxcrHJd0jLljeBCl6VkWFeMMUBb8kIAA06RNVByajWVNVasmdfAZal5bRG4tcY2FmUxJTfj3q63VtG4hObTdN6jSYoKIYHxHhIjZEIXY8BG7UJ_ZzgoCmrIVq3VMVs1ZKvGbHvlYlRi_8PeYRgs0Bu0LgwOtnP_7vgBNaSKDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Benson, David A. ; Bolster, Diogo ; Pankavich, Stephen ; Schmidt, Michael J.</creator><creatorcontrib>Benson, David A. ; Bolster, Diogo ; Pankavich, Stephen ; Schmidt, Michael J. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>•Traditional kernel density estimation uses assumed kernel function form (e.g., Gaussian).•A more intuitive approach uses a kernel that is the shape of the underlying data density.•An iterative, machine learning approach learns the shape of the kernel by using the evolving estimated density.•Our approach has lower error than traditional methods when applied to a range of known densities.•When applied to particle arrival times, the new approach smoothly interpolates and extrapolates the BTC. Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the Green’s function of an underlying PDE. As such, each particle is a sample from the Green’s function; therefore, each particle should be distributed according to the Green’s function. In short, the kernel of a convolutional interpolation of the particle sample “cloud” should be a replica of the cloud itself. This idea gives rise to an iterative method by which the form of the kernel may be discerned in the process of interpolating the Green’s function. When the Green’s function is a density, this method is broadly applicable to interpolating a kernel density estimate based on random data drawn from a single distribution. We formulate and construct the algorithm and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including breakthrough curves.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2021.103889</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>ENGINEERING ; Kernel density estimation ; Machine learning ; Nonparametric kernel ; Particle methods</subject><ispartof>Advances in water resources, 2021-06, Vol.152, p.103889, Article 103889</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-f757a4482eb62220ed453702051e2f0451da18be62f9b0584a5bde05ddcdfde83</citedby><cites>FETCH-LOGICAL-a414t-f757a4482eb62220ed453702051e2f0451da18be62f9b0584a5bde05ddcdfde83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2021.103889$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1778025$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Benson, David A.</creatorcontrib><creatorcontrib>Bolster, Diogo</creatorcontrib><creatorcontrib>Pankavich, Stephen</creatorcontrib><creatorcontrib>Schmidt, Michael J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation</title><title>Advances in water resources</title><description>•Traditional kernel density estimation uses assumed kernel function form (e.g., Gaussian).•A more intuitive approach uses a kernel that is the shape of the underlying data density.•An iterative, machine learning approach learns the shape of the kernel by using the evolving estimated density.•Our approach has lower error than traditional methods when applied to a range of known densities.•When applied to particle arrival times, the new approach smoothly interpolates and extrapolates the BTC. Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the Green’s function of an underlying PDE. As such, each particle is a sample from the Green’s function; therefore, each particle should be distributed according to the Green’s function. In short, the kernel of a convolutional interpolation of the particle sample “cloud” should be a replica of the cloud itself. This idea gives rise to an iterative method by which the form of the kernel may be discerned in the process of interpolating the Green’s function. When the Green’s function is a density, this method is broadly applicable to interpolating a kernel density estimate based on random data drawn from a single distribution. We formulate and construct the algorithm and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including breakthrough curves.</description><subject>ENGINEERING</subject><subject>Kernel density estimation</subject><subject>Machine learning</subject><subject>Nonparametric kernel</subject><subject>Particle methods</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwzAMxSMEEmPwGag40-GkTZMdp4l_0gQXOEdp4kK2Lp2SMLRvT0vRrpws2b_nZz9CrinMKNDqbj3Tdv-tU8A4Y8Bo3y2knJ-QCZWC5fOKi1MygQLmORUgz8lFjGsAkKVgE-JfOr_TQW8xBWduM6uTzmsd0WYbDB7bzPmEYde1OrnOZ00Xsp5PzrSYp6DNxvmPLLrt1wjETPuj1KKPLh0yjMltf8eX5KzRbcSrvzol7w_3b8unfPX6-LxcrHJd0jLljeBCl6VkWFeMMUBb8kIAA06RNVByajWVNVasmdfAZal5bRG4tcY2FmUxJTfj3q63VtG4hObTdN6jSYoKIYHxHhIjZEIXY8BG7UJ_ZzgoCmrIVq3VMVs1ZKvGbHvlYlRi_8PeYRgs0Bu0LgwOtnP_7vgBNaSKDA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Benson, David A.</creator><creator>Bolster, Diogo</creator><creator>Pankavich, Stephen</creator><creator>Schmidt, Michael J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210601</creationdate><title>Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation</title><author>Benson, David A. ; Bolster, Diogo ; Pankavich, Stephen ; Schmidt, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-f757a4482eb62220ed453702051e2f0451da18be62f9b0584a5bde05ddcdfde83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ENGINEERING</topic><topic>Kernel density estimation</topic><topic>Machine learning</topic><topic>Nonparametric kernel</topic><topic>Particle methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benson, David A.</creatorcontrib><creatorcontrib>Bolster, Diogo</creatorcontrib><creatorcontrib>Pankavich, Stephen</creatorcontrib><creatorcontrib>Schmidt, Michael J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benson, David A.</au><au>Bolster, Diogo</au><au>Pankavich, Stephen</au><au>Schmidt, Michael J.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation</atitle><jtitle>Advances in water resources</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>152</volume><spage>103889</spage><pages>103889-</pages><artnum>103889</artnum><issn>0309-1708</issn><eissn>1872-9657</eissn><abstract>•Traditional kernel density estimation uses assumed kernel function form (e.g., Gaussian).•A more intuitive approach uses a kernel that is the shape of the underlying data density.•An iterative, machine learning approach learns the shape of the kernel by using the evolving estimated density.•Our approach has lower error than traditional methods when applied to a range of known densities.•When applied to particle arrival times, the new approach smoothly interpolates and extrapolates the BTC. Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the Green’s function of an underlying PDE. As such, each particle is a sample from the Green’s function; therefore, each particle should be distributed according to the Green’s function. In short, the kernel of a convolutional interpolation of the particle sample “cloud” should be a replica of the cloud itself. This idea gives rise to an iterative method by which the form of the kernel may be discerned in the process of interpolating the Green’s function. When the Green’s function is a density, this method is broadly applicable to interpolating a kernel density estimate based on random data drawn from a single distribution. We formulate and construct the algorithm and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including breakthrough curves.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2021.103889</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2021-06, Vol.152, p.103889, Article 103889
issn 0309-1708
1872-9657
language eng
recordid cdi_osti_scitechconnect_1778025
source Elsevier ScienceDirect Journals Complete
subjects ENGINEERING
Kernel density estimation
Machine learning
Nonparametric kernel
Particle methods
title Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric,%20data-based%20kernel%20interpolation%20for%20particle-tracking%20simulations%20and%20kernel%20density%20estimation&rft.jtitle=Advances%20in%20water%20resources&rft.au=Benson,%20David%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-06-01&rft.volume=152&rft.spage=103889&rft.pages=103889-&rft.artnum=103889&rft.issn=0309-1708&rft.eissn=1872-9657&rft_id=info:doi/10.1016/j.advwatres.2021.103889&rft_dat=%3Celsevier_osti_%3ES0309170821000440%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0309170821000440&rfr_iscdi=true