Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites

Palladium-exchanged zeolites are candidate materials for passive NO x adsorption in automotive exhaust aftertreatment, where mononuclear Pd cations behave as precursors to the purported NO x adsorption sites. Yet, the structures of zeolite lattice binding sites capable of stabilizing mononuclear Pd2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-03, Vol.33 (5), p.1698-1713
Hauptverfasser: Lardinois, Trevor M, Bates, Jason S, Lippie, Harrison H, Russell, Christopher K, Miller, Jeffrey T, Meyer, Harry M, Unocic, Kinga A, Prikhodko, Vitaly, Wei, Xinyi, Lambert, Christine K, Getsoian, Andrew Bean, Gounder, Rajamani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1713
container_issue 5
container_start_page 1698
container_title Chemistry of materials
container_volume 33
creator Lardinois, Trevor M
Bates, Jason S
Lippie, Harrison H
Russell, Christopher K
Miller, Jeffrey T
Meyer, Harry M
Unocic, Kinga A
Prikhodko, Vitaly
Wei, Xinyi
Lambert, Christine K
Getsoian, Andrew Bean
Gounder, Rajamani
description Palladium-exchanged zeolites are candidate materials for passive NO x adsorption in automotive exhaust aftertreatment, where mononuclear Pd cations behave as precursors to the purported NO x adsorption sites. Yet, the structures of zeolite lattice binding sites capable of stabilizing mononuclear Pd2+ ions, and the mechanisms that interconvert agglomerated PdO and Pd domains into mononuclear Pd2+ ions during Pd redispersion treatments, remain incompletely understood. Here, we use a suite of spectroscopic methods and quantitative site titration techniques to characterize mononuclear and agglomerated Pd species on zeolites with varying material properties and treatment history. Aqueous-phase methods to introduce Pd onto NH4-form zeolites initially form mononuclear [Pd­(NH3)4]2+ complexes, but subsequent thermal treatments (573–723 K; air) lead to in situ formation of H2 that first reduces Pd2+ to metallic Pd domains, which are then oxidized by air to PdO domains. Progressive treatment of Pd-zeolites in air to higher temperatures (723–1023 K) converts larger fractions of agglomerated PdO to mononuclear Pd2+, as quantified by H2 temperature programmed reduction, because higher temperature treatments facilitate Pd redispersion toward deeper locations within chabazite (CHA) crystallites, which is corroborated by complementary titrimetric and spectroscopic data. Pd-CHA zeolites synthesized with similar bulk Pd and framework Al content, but varying framework Al arrangement, provide evidence that six-membered rings (6-MR) hosting paired Al sites (Al–O–(Si–O) x –Al, x = 1, 2) stabilize Pd2+ ions and that otherwise isolated Al sites can stabilize [PdOH]+ species, identifiable by an IR OH stretch at 3660 cm–1. These findings clarify the underlying chemical processes and gas environments that cause Pd agglomeration in zeolites and their subsequent redispersion to mononuclear Pd2+ ions, which prefer binding at 6-MR paired Al sites in CHA, and indicate that higher temperature air treatments lead to more uniform Pd spatial distributions throughout zeolite crystallites.
doi_str_mv 10.1021/acs.chemmater.0c04465
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1777740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i17150288</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-2d0750f089e97ec65008099c178d322d7c609d87071bf9d2a37155c911c16c0d3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqXwEZAsJhhSzkkcJ2MV_lUqohKwsFiu7bSpEhvZThF8ely1YuWWG-5-7-49hC4JTAik5FZIP5Fr3fciaDcBCXle0CM0IjSFhAKkx2gEZcWSnNHiFJ15vwEgES1HaPsa3CDD4ESHZyby0pqtdr61Bi91-NLa4Olq1dleuyiv8EJ0nVDt0OM724vWeCyMws_WWDPITguHF-p6NrvBtQhRxOPW4HotluKnDRp_aNvF7s_RSSM6ry8OfYzeH-7f6qdk_vI4q6fzROQZDUmqgFFo4vO6YloW0UwJVSUJK1WWporJAipVMmBk2VQqFRkjlMqKEEkKCSobo6u9rvWh5V7G23IdLRotAycsVg5xie6XpLPeO93wT9f2wn1zAnyXMI8J87-E-SHhyJE9txtv7OBMtPIP8wtD2YSB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites</title><source>American Chemical Society Journals</source><creator>Lardinois, Trevor M ; Bates, Jason S ; Lippie, Harrison H ; Russell, Christopher K ; Miller, Jeffrey T ; Meyer, Harry M ; Unocic, Kinga A ; Prikhodko, Vitaly ; Wei, Xinyi ; Lambert, Christine K ; Getsoian, Andrew Bean ; Gounder, Rajamani</creator><creatorcontrib>Lardinois, Trevor M ; Bates, Jason S ; Lippie, Harrison H ; Russell, Christopher K ; Miller, Jeffrey T ; Meyer, Harry M ; Unocic, Kinga A ; Prikhodko, Vitaly ; Wei, Xinyi ; Lambert, Christine K ; Getsoian, Andrew Bean ; Gounder, Rajamani ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><description>Palladium-exchanged zeolites are candidate materials for passive NO x adsorption in automotive exhaust aftertreatment, where mononuclear Pd cations behave as precursors to the purported NO x adsorption sites. Yet, the structures of zeolite lattice binding sites capable of stabilizing mononuclear Pd2+ ions, and the mechanisms that interconvert agglomerated PdO and Pd domains into mononuclear Pd2+ ions during Pd redispersion treatments, remain incompletely understood. Here, we use a suite of spectroscopic methods and quantitative site titration techniques to characterize mononuclear and agglomerated Pd species on zeolites with varying material properties and treatment history. Aqueous-phase methods to introduce Pd onto NH4-form zeolites initially form mononuclear [Pd­(NH3)4]2+ complexes, but subsequent thermal treatments (573–723 K; air) lead to in situ formation of H2 that first reduces Pd2+ to metallic Pd domains, which are then oxidized by air to PdO domains. Progressive treatment of Pd-zeolites in air to higher temperatures (723–1023 K) converts larger fractions of agglomerated PdO to mononuclear Pd2+, as quantified by H2 temperature programmed reduction, because higher temperature treatments facilitate Pd redispersion toward deeper locations within chabazite (CHA) crystallites, which is corroborated by complementary titrimetric and spectroscopic data. Pd-CHA zeolites synthesized with similar bulk Pd and framework Al content, but varying framework Al arrangement, provide evidence that six-membered rings (6-MR) hosting paired Al sites (Al–O–(Si–O) x –Al, x = 1, 2) stabilize Pd2+ ions and that otherwise isolated Al sites can stabilize [PdOH]+ species, identifiable by an IR OH stretch at 3660 cm–1. These findings clarify the underlying chemical processes and gas environments that cause Pd agglomeration in zeolites and their subsequent redispersion to mononuclear Pd2+ ions, which prefer binding at 6-MR paired Al sites in CHA, and indicate that higher temperature air treatments lead to more uniform Pd spatial distributions throughout zeolite crystallites.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c04465</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atmospheric chemistry ; Cations ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; Palladium ; Redox reactions ; Zeolites</subject><ispartof>Chemistry of materials, 2021-03, Vol.33 (5), p.1698-1713</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-2d0750f089e97ec65008099c178d322d7c609d87071bf9d2a37155c911c16c0d3</citedby><cites>FETCH-LOGICAL-a435t-2d0750f089e97ec65008099c178d322d7c609d87071bf9d2a37155c911c16c0d3</cites><orcidid>0000-0003-1347-534X ; 0000-0002-6269-0620 ; 000000031347534X ; 0000000276039687 ; 0000000279114064 ; 0000000244685836 ; 0000000262690620 ; 0000000349941664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c04465$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c04465$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1777740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lardinois, Trevor M</creatorcontrib><creatorcontrib>Bates, Jason S</creatorcontrib><creatorcontrib>Lippie, Harrison H</creatorcontrib><creatorcontrib>Russell, Christopher K</creatorcontrib><creatorcontrib>Miller, Jeffrey T</creatorcontrib><creatorcontrib>Meyer, Harry M</creatorcontrib><creatorcontrib>Unocic, Kinga A</creatorcontrib><creatorcontrib>Prikhodko, Vitaly</creatorcontrib><creatorcontrib>Wei, Xinyi</creatorcontrib><creatorcontrib>Lambert, Christine K</creatorcontrib><creatorcontrib>Getsoian, Andrew Bean</creatorcontrib><creatorcontrib>Gounder, Rajamani</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><title>Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Palladium-exchanged zeolites are candidate materials for passive NO x adsorption in automotive exhaust aftertreatment, where mononuclear Pd cations behave as precursors to the purported NO x adsorption sites. Yet, the structures of zeolite lattice binding sites capable of stabilizing mononuclear Pd2+ ions, and the mechanisms that interconvert agglomerated PdO and Pd domains into mononuclear Pd2+ ions during Pd redispersion treatments, remain incompletely understood. Here, we use a suite of spectroscopic methods and quantitative site titration techniques to characterize mononuclear and agglomerated Pd species on zeolites with varying material properties and treatment history. Aqueous-phase methods to introduce Pd onto NH4-form zeolites initially form mononuclear [Pd­(NH3)4]2+ complexes, but subsequent thermal treatments (573–723 K; air) lead to in situ formation of H2 that first reduces Pd2+ to metallic Pd domains, which are then oxidized by air to PdO domains. Progressive treatment of Pd-zeolites in air to higher temperatures (723–1023 K) converts larger fractions of agglomerated PdO to mononuclear Pd2+, as quantified by H2 temperature programmed reduction, because higher temperature treatments facilitate Pd redispersion toward deeper locations within chabazite (CHA) crystallites, which is corroborated by complementary titrimetric and spectroscopic data. Pd-CHA zeolites synthesized with similar bulk Pd and framework Al content, but varying framework Al arrangement, provide evidence that six-membered rings (6-MR) hosting paired Al sites (Al–O–(Si–O) x –Al, x = 1, 2) stabilize Pd2+ ions and that otherwise isolated Al sites can stabilize [PdOH]+ species, identifiable by an IR OH stretch at 3660 cm–1. These findings clarify the underlying chemical processes and gas environments that cause Pd agglomeration in zeolites and their subsequent redispersion to mononuclear Pd2+ ions, which prefer binding at 6-MR paired Al sites in CHA, and indicate that higher temperature air treatments lead to more uniform Pd spatial distributions throughout zeolite crystallites.</description><subject>Atmospheric chemistry</subject><subject>Cations</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>Palladium</subject><subject>Redox reactions</subject><subject>Zeolites</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxS0EEqXwEZAsJhhSzkkcJ2MV_lUqohKwsFiu7bSpEhvZThF8ely1YuWWG-5-7-49hC4JTAik5FZIP5Fr3fciaDcBCXle0CM0IjSFhAKkx2gEZcWSnNHiFJ15vwEgES1HaPsa3CDD4ESHZyby0pqtdr61Bi91-NLa4Olq1dleuyiv8EJ0nVDt0OM724vWeCyMws_WWDPITguHF-p6NrvBtQhRxOPW4HotluKnDRp_aNvF7s_RSSM6ry8OfYzeH-7f6qdk_vI4q6fzROQZDUmqgFFo4vO6YloW0UwJVSUJK1WWporJAipVMmBk2VQqFRkjlMqKEEkKCSobo6u9rvWh5V7G23IdLRotAycsVg5xie6XpLPeO93wT9f2wn1zAnyXMI8J87-E-SHhyJE9txtv7OBMtPIP8wtD2YSB</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>Lardinois, Trevor M</creator><creator>Bates, Jason S</creator><creator>Lippie, Harrison H</creator><creator>Russell, Christopher K</creator><creator>Miller, Jeffrey T</creator><creator>Meyer, Harry M</creator><creator>Unocic, Kinga A</creator><creator>Prikhodko, Vitaly</creator><creator>Wei, Xinyi</creator><creator>Lambert, Christine K</creator><creator>Getsoian, Andrew Bean</creator><creator>Gounder, Rajamani</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1347-534X</orcidid><orcidid>https://orcid.org/0000-0002-6269-0620</orcidid><orcidid>https://orcid.org/000000031347534X</orcidid><orcidid>https://orcid.org/0000000276039687</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000244685836</orcidid><orcidid>https://orcid.org/0000000262690620</orcidid><orcidid>https://orcid.org/0000000349941664</orcidid></search><sort><creationdate>20210309</creationdate><title>Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites</title><author>Lardinois, Trevor M ; Bates, Jason S ; Lippie, Harrison H ; Russell, Christopher K ; Miller, Jeffrey T ; Meyer, Harry M ; Unocic, Kinga A ; Prikhodko, Vitaly ; Wei, Xinyi ; Lambert, Christine K ; Getsoian, Andrew Bean ; Gounder, Rajamani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-2d0750f089e97ec65008099c178d322d7c609d87071bf9d2a37155c911c16c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric chemistry</topic><topic>Cations</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>Palladium</topic><topic>Redox reactions</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lardinois, Trevor M</creatorcontrib><creatorcontrib>Bates, Jason S</creatorcontrib><creatorcontrib>Lippie, Harrison H</creatorcontrib><creatorcontrib>Russell, Christopher K</creatorcontrib><creatorcontrib>Miller, Jeffrey T</creatorcontrib><creatorcontrib>Meyer, Harry M</creatorcontrib><creatorcontrib>Unocic, Kinga A</creatorcontrib><creatorcontrib>Prikhodko, Vitaly</creatorcontrib><creatorcontrib>Wei, Xinyi</creatorcontrib><creatorcontrib>Lambert, Christine K</creatorcontrib><creatorcontrib>Getsoian, Andrew Bean</creatorcontrib><creatorcontrib>Gounder, Rajamani</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lardinois, Trevor M</au><au>Bates, Jason S</au><au>Lippie, Harrison H</au><au>Russell, Christopher K</au><au>Miller, Jeffrey T</au><au>Meyer, Harry M</au><au>Unocic, Kinga A</au><au>Prikhodko, Vitaly</au><au>Wei, Xinyi</au><au>Lambert, Christine K</au><au>Getsoian, Andrew Bean</au><au>Gounder, Rajamani</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><aucorp>Purdue Univ., West Lafayette, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-03-09</date><risdate>2021</risdate><volume>33</volume><issue>5</issue><spage>1698</spage><epage>1713</epage><pages>1698-1713</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Palladium-exchanged zeolites are candidate materials for passive NO x adsorption in automotive exhaust aftertreatment, where mononuclear Pd cations behave as precursors to the purported NO x adsorption sites. Yet, the structures of zeolite lattice binding sites capable of stabilizing mononuclear Pd2+ ions, and the mechanisms that interconvert agglomerated PdO and Pd domains into mononuclear Pd2+ ions during Pd redispersion treatments, remain incompletely understood. Here, we use a suite of spectroscopic methods and quantitative site titration techniques to characterize mononuclear and agglomerated Pd species on zeolites with varying material properties and treatment history. Aqueous-phase methods to introduce Pd onto NH4-form zeolites initially form mononuclear [Pd­(NH3)4]2+ complexes, but subsequent thermal treatments (573–723 K; air) lead to in situ formation of H2 that first reduces Pd2+ to metallic Pd domains, which are then oxidized by air to PdO domains. Progressive treatment of Pd-zeolites in air to higher temperatures (723–1023 K) converts larger fractions of agglomerated PdO to mononuclear Pd2+, as quantified by H2 temperature programmed reduction, because higher temperature treatments facilitate Pd redispersion toward deeper locations within chabazite (CHA) crystallites, which is corroborated by complementary titrimetric and spectroscopic data. Pd-CHA zeolites synthesized with similar bulk Pd and framework Al content, but varying framework Al arrangement, provide evidence that six-membered rings (6-MR) hosting paired Al sites (Al–O–(Si–O) x –Al, x = 1, 2) stabilize Pd2+ ions and that otherwise isolated Al sites can stabilize [PdOH]+ species, identifiable by an IR OH stretch at 3660 cm–1. These findings clarify the underlying chemical processes and gas environments that cause Pd agglomeration in zeolites and their subsequent redispersion to mononuclear Pd2+ ions, which prefer binding at 6-MR paired Al sites in CHA, and indicate that higher temperature air treatments lead to more uniform Pd spatial distributions throughout zeolite crystallites.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c04465</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1347-534X</orcidid><orcidid>https://orcid.org/0000-0002-6269-0620</orcidid><orcidid>https://orcid.org/000000031347534X</orcidid><orcidid>https://orcid.org/0000000276039687</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000244685836</orcidid><orcidid>https://orcid.org/0000000262690620</orcidid><orcidid>https://orcid.org/0000000349941664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-03, Vol.33 (5), p.1698-1713
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1777740
source American Chemical Society Journals
subjects Atmospheric chemistry
Cations
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
Palladium
Redox reactions
Zeolites
title Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Interconversion%20between%20Agglomerated%20Palladium%20Domains%20and%20Mononuclear%20Pd(II)%20Cations%20in%20Chabazite%20Zeolites&rft.jtitle=Chemistry%20of%20materials&rft.au=Lardinois,%20Trevor%20M&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2021-03-09&rft.volume=33&rft.issue=5&rft.spage=1698&rft.epage=1713&rft.pages=1698-1713&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c04465&rft_dat=%3Cacs_osti_%3Ei17150288%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true