Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate

Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-05, Vol.11 (20), p.n/a
Hauptverfasser: Sanchez, Joel, Stevens, Michaela Burke, Young, Alexandra R., Gallo, Alessandro, Zhao, Meng, Liu, Yunzhi, Ramos‐Garcés, Mario V., Ben‐Naim, Micha, Colón, Jorge L., Sinclair, Robert, King, Laurie A., Bajdich, Michal, Jaramillo, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced energy materials
container_volume 11
creator Sanchez, Joel
Stevens, Michaela Burke
Young, Alexandra R.
Gallo, Alessandro
Zhao, Meng
Liu, Yunzhi
Ramos‐Garcés, Mario V.
Ben‐Naim, Micha
Colón, Jorge L.
Sinclair, Robert
King, Laurie A.
Bajdich, Michal
Jaramillo, Thomas F.
description Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments. A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content.
doi_str_mv 10.1002/aenm.202003545
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1777527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532439672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EElXpymzBnOKv2MlYVS1UagsDLDBYruMQV6ldYpcq_z2pgsrILXfD753eewDcYjTGCJEHZdxuTBBBiKYsvQADzDFLeMbQ5fmm5BqMQtiibliOEaUD8LEIvlbRuk8YKwNntdGx8VpFVbfRajjR0X7b2EJfQgWn3pXWmQKu7dzAlY-2hEcbK-vgu220d_awgy-VD_tKRXMDrkpVBzP63UPwNp-9Tp-S5fPjYjpZJpoRnCZpIQqhU5FpbDDPFDdcGK4ZExTlxYZtcs4IyRTZcJZxRTFlnGxQRnChS14iOgR3_V8fopVB22h01ZlxXRaJhRApER1030P7xn8dTIhy6w-N63xJklLCaM4F6ahxT-nGh9CYUu4bu1NNKzGSp6LlqWh5LroT5L3gaGvT_kPLyWy9-tP-AL6kgE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532439672</pqid></control><display><type>article</type><title>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</title><source>Wiley Journals</source><creator>Sanchez, Joel ; Stevens, Michaela Burke ; Young, Alexandra R. ; Gallo, Alessandro ; Zhao, Meng ; Liu, Yunzhi ; Ramos‐Garcés, Mario V. ; Ben‐Naim, Micha ; Colón, Jorge L. ; Sinclair, Robert ; King, Laurie A. ; Bajdich, Michal ; Jaramillo, Thomas F.</creator><creatorcontrib>Sanchez, Joel ; Stevens, Michaela Burke ; Young, Alexandra R. ; Gallo, Alessandro ; Zhao, Meng ; Liu, Yunzhi ; Ramos‐Garcés, Mario V. ; Ben‐Naim, Micha ; Colón, Jorge L. ; Sinclair, Robert ; King, Laurie A. ; Bajdich, Michal ; Jaramillo, Thomas F.</creatorcontrib><description>Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments. A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003545</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Composition ; Confined spaces ; confinement ; Density functional theory ; Electrocatalysts ; intercalation ; Interlayers ; Intermetallic compounds ; Iron ; Iron compounds ; metal‐oxides ; Moisture content ; nanoenvironment ; Nickel compounds ; nickel iron ; oxygen evolution reaction ; Oxygen evolution reactions ; Transition metals ; Zirconium ; zirconium phosphate</subject><ispartof>Advanced energy materials, 2021-05, Vol.11 (20), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</citedby><cites>FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</cites><orcidid>0000-0001-7723-3345 ; 0000-0002-0772-2378 ; 0000-0001-9900-0622 ; 0000-0003-4687-8188 ; 0000-0003-1398-2405 ; 0000-0003-3584-0600 ; 0000-0003-1168-8616 ; 0000-0002-7511-9941 ; 0000000199000622 ; 0000000275119941 ; 0000000311688616 ; 0000000335840600 ; 0000000346878188 ; 0000000207722378 ; 0000000177233345 ; 0000000313982405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202003545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202003545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1777527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Joel</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Young, Alexandra R.</creatorcontrib><creatorcontrib>Gallo, Alessandro</creatorcontrib><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Ramos‐Garcés, Mario V.</creatorcontrib><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Colón, Jorge L.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>King, Laurie A.</creatorcontrib><creatorcontrib>Bajdich, Michal</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><title>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</title><title>Advanced energy materials</title><description>Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments. A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Composition</subject><subject>Confined spaces</subject><subject>confinement</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>intercalation</subject><subject>Interlayers</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>metal‐oxides</subject><subject>Moisture content</subject><subject>nanoenvironment</subject><subject>Nickel compounds</subject><subject>nickel iron</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Transition metals</subject><subject>Zirconium</subject><subject>zirconium phosphate</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EElXpymzBnOKv2MlYVS1UagsDLDBYruMQV6ldYpcq_z2pgsrILXfD753eewDcYjTGCJEHZdxuTBBBiKYsvQADzDFLeMbQ5fmm5BqMQtiibliOEaUD8LEIvlbRuk8YKwNntdGx8VpFVbfRajjR0X7b2EJfQgWn3pXWmQKu7dzAlY-2hEcbK-vgu220d_awgy-VD_tKRXMDrkpVBzP63UPwNp-9Tp-S5fPjYjpZJpoRnCZpIQqhU5FpbDDPFDdcGK4ZExTlxYZtcs4IyRTZcJZxRTFlnGxQRnChS14iOgR3_V8fopVB22h01ZlxXRaJhRApER1030P7xn8dTIhy6w-N63xJklLCaM4F6ahxT-nGh9CYUu4bu1NNKzGSp6LlqWh5LroT5L3gaGvT_kPLyWy9-tP-AL6kgE0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sanchez, Joel</creator><creator>Stevens, Michaela Burke</creator><creator>Young, Alexandra R.</creator><creator>Gallo, Alessandro</creator><creator>Zhao, Meng</creator><creator>Liu, Yunzhi</creator><creator>Ramos‐Garcés, Mario V.</creator><creator>Ben‐Naim, Micha</creator><creator>Colón, Jorge L.</creator><creator>Sinclair, Robert</creator><creator>King, Laurie A.</creator><creator>Bajdich, Michal</creator><creator>Jaramillo, Thomas F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7723-3345</orcidid><orcidid>https://orcid.org/0000-0002-0772-2378</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0003-4687-8188</orcidid><orcidid>https://orcid.org/0000-0003-1398-2405</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0003-1168-8616</orcidid><orcidid>https://orcid.org/0000-0002-7511-9941</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000275119941</orcidid><orcidid>https://orcid.org/0000000311688616</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid><orcidid>https://orcid.org/0000000346878188</orcidid><orcidid>https://orcid.org/0000000207722378</orcidid><orcidid>https://orcid.org/0000000177233345</orcidid><orcidid>https://orcid.org/0000000313982405</orcidid></search><sort><creationdate>20210501</creationdate><title>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</title><author>Sanchez, Joel ; Stevens, Michaela Burke ; Young, Alexandra R. ; Gallo, Alessandro ; Zhao, Meng ; Liu, Yunzhi ; Ramos‐Garcés, Mario V. ; Ben‐Naim, Micha ; Colón, Jorge L. ; Sinclair, Robert ; King, Laurie A. ; Bajdich, Michal ; Jaramillo, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Composition</topic><topic>Confined spaces</topic><topic>confinement</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>intercalation</topic><topic>Interlayers</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>metal‐oxides</topic><topic>Moisture content</topic><topic>nanoenvironment</topic><topic>Nickel compounds</topic><topic>nickel iron</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Transition metals</topic><topic>Zirconium</topic><topic>zirconium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Joel</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Young, Alexandra R.</creatorcontrib><creatorcontrib>Gallo, Alessandro</creatorcontrib><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Ramos‐Garcés, Mario V.</creatorcontrib><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Colón, Jorge L.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>King, Laurie A.</creatorcontrib><creatorcontrib>Bajdich, Michal</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Joel</au><au>Stevens, Michaela Burke</au><au>Young, Alexandra R.</au><au>Gallo, Alessandro</au><au>Zhao, Meng</au><au>Liu, Yunzhi</au><au>Ramos‐Garcés, Mario V.</au><au>Ben‐Naim, Micha</au><au>Colón, Jorge L.</au><au>Sinclair, Robert</au><au>King, Laurie A.</au><au>Bajdich, Michal</au><au>Jaramillo, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</atitle><jtitle>Advanced energy materials</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>11</volume><issue>20</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments. A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003545</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7723-3345</orcidid><orcidid>https://orcid.org/0000-0002-0772-2378</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0003-4687-8188</orcidid><orcidid>https://orcid.org/0000-0003-1398-2405</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0003-1168-8616</orcidid><orcidid>https://orcid.org/0000-0002-7511-9941</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000275119941</orcidid><orcidid>https://orcid.org/0000000311688616</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid><orcidid>https://orcid.org/0000000346878188</orcidid><orcidid>https://orcid.org/0000000207722378</orcidid><orcidid>https://orcid.org/0000000177233345</orcidid><orcidid>https://orcid.org/0000000313982405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-05, Vol.11 (20), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1777527
source Wiley Journals
subjects Catalysis
Catalysts
Composition
Confined spaces
confinement
Density functional theory
Electrocatalysts
intercalation
Interlayers
Intermetallic compounds
Iron
Iron compounds
metal‐oxides
Moisture content
nanoenvironment
Nickel compounds
nickel iron
oxygen evolution reaction
Oxygen evolution reactions
Transition metals
Zirconium
zirconium phosphate
title Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolating%20the%20Electrocatalytic%20Activity%20of%20a%20Confined%20NiFe%20Motif%20within%20Zirconium%20Phosphate&rft.jtitle=Advanced%20energy%20materials&rft.au=Sanchez,%20Joel&rft.date=2021-05-01&rft.volume=11&rft.issue=20&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003545&rft_dat=%3Cproquest_osti_%3E2532439672%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532439672&rft_id=info:pmid/&rfr_iscdi=true