Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate
Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-05, Vol.11 (20), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Sanchez, Joel Stevens, Michaela Burke Young, Alexandra R. Gallo, Alessandro Zhao, Meng Liu, Yunzhi Ramos‐Garcés, Mario V. Ben‐Naim, Micha Colón, Jorge L. Sinclair, Robert King, Laurie A. Bajdich, Michal Jaramillo, Thomas F. |
description | Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments.
A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content. |
doi_str_mv | 10.1002/aenm.202003545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1777527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532439672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EElXpymzBnOKv2MlYVS1UagsDLDBYruMQV6ldYpcq_z2pgsrILXfD753eewDcYjTGCJEHZdxuTBBBiKYsvQADzDFLeMbQ5fmm5BqMQtiibliOEaUD8LEIvlbRuk8YKwNntdGx8VpFVbfRajjR0X7b2EJfQgWn3pXWmQKu7dzAlY-2hEcbK-vgu220d_awgy-VD_tKRXMDrkpVBzP63UPwNp-9Tp-S5fPjYjpZJpoRnCZpIQqhU5FpbDDPFDdcGK4ZExTlxYZtcs4IyRTZcJZxRTFlnGxQRnChS14iOgR3_V8fopVB22h01ZlxXRaJhRApER1030P7xn8dTIhy6w-N63xJklLCaM4F6ahxT-nGh9CYUu4bu1NNKzGSp6LlqWh5LroT5L3gaGvT_kPLyWy9-tP-AL6kgE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532439672</pqid></control><display><type>article</type><title>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</title><source>Wiley Journals</source><creator>Sanchez, Joel ; Stevens, Michaela Burke ; Young, Alexandra R. ; Gallo, Alessandro ; Zhao, Meng ; Liu, Yunzhi ; Ramos‐Garcés, Mario V. ; Ben‐Naim, Micha ; Colón, Jorge L. ; Sinclair, Robert ; King, Laurie A. ; Bajdich, Michal ; Jaramillo, Thomas F.</creator><creatorcontrib>Sanchez, Joel ; Stevens, Michaela Burke ; Young, Alexandra R. ; Gallo, Alessandro ; Zhao, Meng ; Liu, Yunzhi ; Ramos‐Garcés, Mario V. ; Ben‐Naim, Micha ; Colón, Jorge L. ; Sinclair, Robert ; King, Laurie A. ; Bajdich, Michal ; Jaramillo, Thomas F.</creatorcontrib><description>Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments.
A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003545</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Composition ; Confined spaces ; confinement ; Density functional theory ; Electrocatalysts ; intercalation ; Interlayers ; Intermetallic compounds ; Iron ; Iron compounds ; metal‐oxides ; Moisture content ; nanoenvironment ; Nickel compounds ; nickel iron ; oxygen evolution reaction ; Oxygen evolution reactions ; Transition metals ; Zirconium ; zirconium phosphate</subject><ispartof>Advanced energy materials, 2021-05, Vol.11 (20), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</citedby><cites>FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</cites><orcidid>0000-0001-7723-3345 ; 0000-0002-0772-2378 ; 0000-0001-9900-0622 ; 0000-0003-4687-8188 ; 0000-0003-1398-2405 ; 0000-0003-3584-0600 ; 0000-0003-1168-8616 ; 0000-0002-7511-9941 ; 0000000199000622 ; 0000000275119941 ; 0000000311688616 ; 0000000335840600 ; 0000000346878188 ; 0000000207722378 ; 0000000177233345 ; 0000000313982405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202003545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202003545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1777527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Joel</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Young, Alexandra R.</creatorcontrib><creatorcontrib>Gallo, Alessandro</creatorcontrib><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Ramos‐Garcés, Mario V.</creatorcontrib><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Colón, Jorge L.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>King, Laurie A.</creatorcontrib><creatorcontrib>Bajdich, Michal</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><title>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</title><title>Advanced energy materials</title><description>Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments.
A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Composition</subject><subject>Confined spaces</subject><subject>confinement</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>intercalation</subject><subject>Interlayers</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>metal‐oxides</subject><subject>Moisture content</subject><subject>nanoenvironment</subject><subject>Nickel compounds</subject><subject>nickel iron</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Transition metals</subject><subject>Zirconium</subject><subject>zirconium phosphate</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EElXpymzBnOKv2MlYVS1UagsDLDBYruMQV6ldYpcq_z2pgsrILXfD753eewDcYjTGCJEHZdxuTBBBiKYsvQADzDFLeMbQ5fmm5BqMQtiibliOEaUD8LEIvlbRuk8YKwNntdGx8VpFVbfRajjR0X7b2EJfQgWn3pXWmQKu7dzAlY-2hEcbK-vgu220d_awgy-VD_tKRXMDrkpVBzP63UPwNp-9Tp-S5fPjYjpZJpoRnCZpIQqhU5FpbDDPFDdcGK4ZExTlxYZtcs4IyRTZcJZxRTFlnGxQRnChS14iOgR3_V8fopVB22h01ZlxXRaJhRApER1030P7xn8dTIhy6w-N63xJklLCaM4F6ahxT-nGh9CYUu4bu1NNKzGSp6LlqWh5LroT5L3gaGvT_kPLyWy9-tP-AL6kgE0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sanchez, Joel</creator><creator>Stevens, Michaela Burke</creator><creator>Young, Alexandra R.</creator><creator>Gallo, Alessandro</creator><creator>Zhao, Meng</creator><creator>Liu, Yunzhi</creator><creator>Ramos‐Garcés, Mario V.</creator><creator>Ben‐Naim, Micha</creator><creator>Colón, Jorge L.</creator><creator>Sinclair, Robert</creator><creator>King, Laurie A.</creator><creator>Bajdich, Michal</creator><creator>Jaramillo, Thomas F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7723-3345</orcidid><orcidid>https://orcid.org/0000-0002-0772-2378</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0003-4687-8188</orcidid><orcidid>https://orcid.org/0000-0003-1398-2405</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0003-1168-8616</orcidid><orcidid>https://orcid.org/0000-0002-7511-9941</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000275119941</orcidid><orcidid>https://orcid.org/0000000311688616</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid><orcidid>https://orcid.org/0000000346878188</orcidid><orcidid>https://orcid.org/0000000207722378</orcidid><orcidid>https://orcid.org/0000000177233345</orcidid><orcidid>https://orcid.org/0000000313982405</orcidid></search><sort><creationdate>20210501</creationdate><title>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</title><author>Sanchez, Joel ; Stevens, Michaela Burke ; Young, Alexandra R. ; Gallo, Alessandro ; Zhao, Meng ; Liu, Yunzhi ; Ramos‐Garcés, Mario V. ; Ben‐Naim, Micha ; Colón, Jorge L. ; Sinclair, Robert ; King, Laurie A. ; Bajdich, Michal ; Jaramillo, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4215-5d7d7c578c1e168a6e67e6c447309db4b964228a2b6486a313462b0821dcf6f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Composition</topic><topic>Confined spaces</topic><topic>confinement</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>intercalation</topic><topic>Interlayers</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>metal‐oxides</topic><topic>Moisture content</topic><topic>nanoenvironment</topic><topic>Nickel compounds</topic><topic>nickel iron</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Transition metals</topic><topic>Zirconium</topic><topic>zirconium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Joel</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Young, Alexandra R.</creatorcontrib><creatorcontrib>Gallo, Alessandro</creatorcontrib><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Ramos‐Garcés, Mario V.</creatorcontrib><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Colón, Jorge L.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>King, Laurie A.</creatorcontrib><creatorcontrib>Bajdich, Michal</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Joel</au><au>Stevens, Michaela Burke</au><au>Young, Alexandra R.</au><au>Gallo, Alessandro</au><au>Zhao, Meng</au><au>Liu, Yunzhi</au><au>Ramos‐Garcés, Mario V.</au><au>Ben‐Naim, Micha</au><au>Colón, Jorge L.</au><au>Sinclair, Robert</au><au>King, Laurie A.</au><au>Bajdich, Michal</au><au>Jaramillo, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate</atitle><jtitle>Advanced energy materials</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>11</volume><issue>20</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Unique classes of active‐site motifs are needed for improved electrocatalysis. Herein, the activity of a new catalyst motif is engineered and isolated for the oxygen evolution reaction (OER) created by nickel–iron transition metal electrocatalysts confined within a layered zirconium phosphate matrix. It is found that with optimal intercalation, confined NiFe catalysts have an order of magnitude improved mass activity compared to more conventional surface‐adsorbed systems in 0.1 m KOH. Interestingly, the confined environments within the layered structure also stabilize Fe‐rich compositions (90%) with exceptional mass activity compared to known Fe‐rich OER catalysts. Through controls and by grafting inert molecules to the outer surface, it is evidenced that the intercalated Ni/Fe species stay within the interlayer during catalysis and serve as the active site. After determining a possible structure (wycherproofite), density functional theory is shown to correlate with the observed experimental compositional trends. It is further demonstrated that the improved activity of this motif is correlated to the Fe and water content/composition within the confined space. This work highlights the catalytic enhancement possibilities available through zirconium phosphate and isolates the activity from the intercalated species versus surface/edge ones, thus opening new avenues to develop and understand catalysts within unique nanoscale chemical environments.
A confined catalytic environment can play an important role in activity and stability. This work investigates and isolates confined Ni–Fe active sites within a zirconium phosphate layered host for the oxygen evolution reaction. It is demonstrated that high activity for the confined Ni/Fe catalyst can be achieved with a stabilized Fe‐rich composition and optimal interlayer water content.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003545</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7723-3345</orcidid><orcidid>https://orcid.org/0000-0002-0772-2378</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0003-4687-8188</orcidid><orcidid>https://orcid.org/0000-0003-1398-2405</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0003-1168-8616</orcidid><orcidid>https://orcid.org/0000-0002-7511-9941</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000275119941</orcidid><orcidid>https://orcid.org/0000000311688616</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid><orcidid>https://orcid.org/0000000346878188</orcidid><orcidid>https://orcid.org/0000000207722378</orcidid><orcidid>https://orcid.org/0000000177233345</orcidid><orcidid>https://orcid.org/0000000313982405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-05, Vol.11 (20), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1777527 |
source | Wiley Journals |
subjects | Catalysis Catalysts Composition Confined spaces confinement Density functional theory Electrocatalysts intercalation Interlayers Intermetallic compounds Iron Iron compounds metal‐oxides Moisture content nanoenvironment Nickel compounds nickel iron oxygen evolution reaction Oxygen evolution reactions Transition metals Zirconium zirconium phosphate |
title | Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolating%20the%20Electrocatalytic%20Activity%20of%20a%20Confined%20NiFe%20Motif%20within%20Zirconium%20Phosphate&rft.jtitle=Advanced%20energy%20materials&rft.au=Sanchez,%20Joel&rft.date=2021-05-01&rft.volume=11&rft.issue=20&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003545&rft_dat=%3Cproquest_osti_%3E2532439672%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532439672&rft_id=info:pmid/&rfr_iscdi=true |