Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA
In a magnetic field, cubic Fe3O4 nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole-dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2020-12, Vol.60 (8) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Angewandte Chemie (International ed.) |
container_volume | 60 |
creator | Urbach, Zachary J. Park, Sarah S. Weigand, Steven L. Rix, James E. Lee, Byeongdu Mirkin, Chad A. |
description | In a magnetic field, cubic Fe3O4 nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole-dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-face interactions, cubic Fe3O4 nanoparticles were functionalized with DNA. Their assembly behaviors were investigated both with and without an applied magnetic field. Upon application of a field, the tilted orientation of cubes, enabled by the flexible DNA ligand shell, led to an unexpected crystallographic alignment of the entire superlattice, as opposed to just the individual particles, along the field direction as revealed by small and wide-angle X-ray scattering. This observation is dependent upon DNA length and sequence and cube dimensions. Taken together, these studies show how combining physical and chemical control can expand the possibilities of crystal engineering with DNA. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1777223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777223</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17772233</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMo-PyHwX2hbazpVqriSgTdl5iO7UiY1CYi_r0V_ABX5y7OPQMxSbI0iaRSctjvlZSRyrNkLKbe3-M4zfN4PRH21LkrcQ2hQSgce3w8kQ16cDconlcycNJdIGMRzo1uETRXsGlbS1jBntBW4Lh_Wuuo0haK7u1Dzx3XxIjdt_2i0MD2uJmL0U1bj4sfZ2K5312KQ-R8oNIbCmga45jRhDJRSqWplH9JH5jfSWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA</title><source>Wiley Journals</source><creator>Urbach, Zachary J. ; Park, Sarah S. ; Weigand, Steven L. ; Rix, James E. ; Lee, Byeongdu ; Mirkin, Chad A.</creator><creatorcontrib>Urbach, Zachary J. ; Park, Sarah S. ; Weigand, Steven L. ; Rix, James E. ; Lee, Byeongdu ; Mirkin, Chad A. ; Air Force Office of Scientific Research ; Argonne National Lab. (ANL), Argonne, IL (United States) ; National Science Foundation</creatorcontrib><description>In a magnetic field, cubic Fe3O4 nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole-dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-face interactions, cubic Fe3O4 nanoparticles were functionalized with DNA. Their assembly behaviors were investigated both with and without an applied magnetic field. Upon application of a field, the tilted orientation of cubes, enabled by the flexible DNA ligand shell, led to an unexpected crystallographic alignment of the entire superlattice, as opposed to just the individual particles, along the field direction as revealed by small and wide-angle X-ray scattering. This observation is dependent upon DNA length and sequence and cube dimensions. Taken together, these studies show how combining physical and chemical control can expand the possibilities of crystal engineering with DNA.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>crystal engineering with DNA ; magnetic materials ; MATERIALS SCIENCE ; nanoparticles ; NANOSCIENCE AND NANOTECHNOLOGY ; self-assembly</subject><ispartof>Angewandte Chemie (International ed.), 2020-12, Vol.60 (8)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000325148805 ; 0000000287706094 ; 0000000302329662 ; 0000000266347627 ; 0000000291092857 ; 0000000331370672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1777223$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Urbach, Zachary J.</creatorcontrib><creatorcontrib>Park, Sarah S.</creatorcontrib><creatorcontrib>Weigand, Steven L.</creatorcontrib><creatorcontrib>Rix, James E.</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><creatorcontrib>Air Force Office of Scientific Research</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>National Science Foundation</creatorcontrib><title>Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA</title><title>Angewandte Chemie (International ed.)</title><description>In a magnetic field, cubic Fe3O4 nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole-dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-face interactions, cubic Fe3O4 nanoparticles were functionalized with DNA. Their assembly behaviors were investigated both with and without an applied magnetic field. Upon application of a field, the tilted orientation of cubes, enabled by the flexible DNA ligand shell, led to an unexpected crystallographic alignment of the entire superlattice, as opposed to just the individual particles, along the field direction as revealed by small and wide-angle X-ray scattering. This observation is dependent upon DNA length and sequence and cube dimensions. Taken together, these studies show how combining physical and chemical control can expand the possibilities of crystal engineering with DNA.</description><subject>crystal engineering with DNA</subject><subject>magnetic materials</subject><subject>MATERIALS SCIENCE</subject><subject>nanoparticles</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>self-assembly</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAQRYMo-PyHwX2hbazpVqriSgTdl5iO7UiY1CYi_r0V_ABX5y7OPQMxSbI0iaRSctjvlZSRyrNkLKbe3-M4zfN4PRH21LkrcQ2hQSgce3w8kQ16cDconlcycNJdIGMRzo1uETRXsGlbS1jBntBW4Lh_Wuuo0haK7u1Dzx3XxIjdt_2i0MD2uJmL0U1bj4sfZ2K5312KQ-R8oNIbCmga45jRhDJRSqWplH9JH5jfSWQ</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Urbach, Zachary J.</creator><creator>Park, Sarah S.</creator><creator>Weigand, Steven L.</creator><creator>Rix, James E.</creator><creator>Lee, Byeongdu</creator><creator>Mirkin, Chad A.</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000325148805</orcidid><orcidid>https://orcid.org/0000000287706094</orcidid><orcidid>https://orcid.org/0000000302329662</orcidid><orcidid>https://orcid.org/0000000266347627</orcidid><orcidid>https://orcid.org/0000000291092857</orcidid><orcidid>https://orcid.org/0000000331370672</orcidid></search><sort><creationdate>20201222</creationdate><title>Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA</title><author>Urbach, Zachary J. ; Park, Sarah S. ; Weigand, Steven L. ; Rix, James E. ; Lee, Byeongdu ; Mirkin, Chad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17772233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>crystal engineering with DNA</topic><topic>magnetic materials</topic><topic>MATERIALS SCIENCE</topic><topic>nanoparticles</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urbach, Zachary J.</creatorcontrib><creatorcontrib>Park, Sarah S.</creatorcontrib><creatorcontrib>Weigand, Steven L.</creatorcontrib><creatorcontrib>Rix, James E.</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><creatorcontrib>Air Force Office of Scientific Research</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>National Science Foundation</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urbach, Zachary J.</au><au>Park, Sarah S.</au><au>Weigand, Steven L.</au><au>Rix, James E.</au><au>Lee, Byeongdu</au><au>Mirkin, Chad A.</au><aucorp>Air Force Office of Scientific Research</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>National Science Foundation</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2020-12-22</date><risdate>2020</risdate><volume>60</volume><issue>8</issue><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In a magnetic field, cubic Fe3O4 nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole-dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-face interactions, cubic Fe3O4 nanoparticles were functionalized with DNA. Their assembly behaviors were investigated both with and without an applied magnetic field. Upon application of a field, the tilted orientation of cubes, enabled by the flexible DNA ligand shell, led to an unexpected crystallographic alignment of the entire superlattice, as opposed to just the individual particles, along the field direction as revealed by small and wide-angle X-ray scattering. This observation is dependent upon DNA length and sequence and cube dimensions. Taken together, these studies show how combining physical and chemical control can expand the possibilities of crystal engineering with DNA.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000325148805</orcidid><orcidid>https://orcid.org/0000000287706094</orcidid><orcidid>https://orcid.org/0000000302329662</orcidid><orcidid>https://orcid.org/0000000266347627</orcidid><orcidid>https://orcid.org/0000000291092857</orcidid><orcidid>https://orcid.org/0000000331370672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2020-12, Vol.60 (8) |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1777223 |
source | Wiley Journals |
subjects | crystal engineering with DNA magnetic materials MATERIALS SCIENCE nanoparticles NANOSCIENCE AND NANOTECHNOLOGY self-assembly |
title | Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Consequences%20of%20Cubic%20Particle%20Shape%20and%20Applied%20Field%20on%20Colloidal%20Crystal%20Engineering%20with%20DNA&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Urbach,%20Zachary%20J.&rft.aucorp=Air%20Force%20Office%20of%20Scientific%20Research&rft.date=2020-12-22&rft.volume=60&rft.issue=8&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/&rft_dat=%3Costi%3E1777223%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |