A coupled multipoint stress–multipoint flux mixed finite element method for the Biot system of poroelasticity

We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces to a cell-centered pressure–displacement system on simplicial and quadrilateral grids. A mixed stress–displacement–rotation formulation for elasticity with weak stress symmetry is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-12, Vol.372 (C), p.113407, Article 113407
Hauptverfasser: Ambartsumyan, Ilona, Khattatov, Eldar, Yotov, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 113407
container_title Computer methods in applied mechanics and engineering
container_volume 372
creator Ambartsumyan, Ilona
Khattatov, Eldar
Yotov, Ivan
description We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces to a cell-centered pressure–displacement system on simplicial and quadrilateral grids. A mixed stress–displacement–rotation formulation for elasticity with weak stress symmetry is coupled with a mixed velocity–pressure Darcy formulation. The spatial discretization is based on combining the multipoint stress mixed finite element (MSMFE) method for elasticity and the multipoint flux mixed finite element (MFMFE) method for Darcy flow. It uses the lowest order Brezzi–Douglas–Marini mixed finite element spaces for the poroelastic stress and Darcy velocity, piecewise constant displacement and pressure, and continuous piecewise linear or bilinear rotation. A vertex quadrature rule is applied to the velocity, stress, and stress–rotation bilinear forms, which block-diagonalizes the corresponding matrices and allows for local velocity, stress, and rotation elimination. This leads to a cell-centered positive-definite system for pressure and displacement at each time step. We perform error analysis for the semidiscrete and fully discrete formulations, establishing first order convergence for all variables in their natural norms. The numerical tests confirm the theoretical convergence rates and illustrate the locking-free property of the method.
doi_str_mv 10.1016/j.cma.2020.113407
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1776280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520305922</els_id><sourcerecordid>2477708760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f3a9163f323fe662b5df1ba0dfb2178d05d2ffdfe00b96998f4ba5e69f6cfe233</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjA-gsqLP4sbETUQHiJa1EA7WVOGOtV0kcbAexHf_AH_IlOAoFFW4sj8-duXMROqNkSQkVl9ul7qolIyy9KV8RuYcWtJBlxigv9tGCkFWeyYLlh-gohC1Jp6Bsgdw11m4cWmhwN7bRDs72EYfoIYTvz68_NdOOH7izH4k0trcRMLTQQfrpIG5cqjqP4wbwjXWpwy5E6LAzeHDeQVuFaLWNuxN0YKo2wOnvfYxe7-9ebh-z9fPD0-31OtO8zGNmeFVSwQ1n3IAQrM4bQ-uKNKZmVBYNyRtmTGOAkLoUZVmYVV3lIEojtAHG-TE6n_u6NFiFNBr0Rru-Bx0VlVKwgiToYoYG795GCFFt3ej75EuxlZSSFFJMFJ0p7V0IHowavO0qv1OUqCl8tVUpfDWFr-bwk-Zq1kDa8d2CnyxAr6GxfnLQOPuP-gfZbY-r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477708760</pqid></control><display><type>article</type><title>A coupled multipoint stress–multipoint flux mixed finite element method for the Biot system of poroelasticity</title><source>Elsevier ScienceDirect Journals</source><creator>Ambartsumyan, Ilona ; Khattatov, Eldar ; Yotov, Ivan</creator><creatorcontrib>Ambartsumyan, Ilona ; Khattatov, Eldar ; Yotov, Ivan</creatorcontrib><description>We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces to a cell-centered pressure–displacement system on simplicial and quadrilateral grids. A mixed stress–displacement–rotation formulation for elasticity with weak stress symmetry is coupled with a mixed velocity–pressure Darcy formulation. The spatial discretization is based on combining the multipoint stress mixed finite element (MSMFE) method for elasticity and the multipoint flux mixed finite element (MFMFE) method for Darcy flow. It uses the lowest order Brezzi–Douglas–Marini mixed finite element spaces for the poroelastic stress and Darcy velocity, piecewise constant displacement and pressure, and continuous piecewise linear or bilinear rotation. A vertex quadrature rule is applied to the velocity, stress, and stress–rotation bilinear forms, which block-diagonalizes the corresponding matrices and allows for local velocity, stress, and rotation elimination. This leads to a cell-centered positive-definite system for pressure and displacement at each time step. We perform error analysis for the semidiscrete and fully discrete formulations, establishing first order convergence for all variables in their natural norms. The numerical tests confirm the theoretical convergence rates and illustrate the locking-free property of the method.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.113407</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cell-centered finite differences ; Convergence ; Displacement ; Elasticity ; Error analysis ; Finite element analysis ; Finite element method ; Locking ; Mixed finite elements ; Multipoint flux ; Multipoint stress ; Norms ; Poroelasticity ; Quadratures ; Quadrilaterals ; Rotation ; Velocity</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-12, Vol.372 (C), p.113407, Article 113407</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f3a9163f323fe662b5df1ba0dfb2178d05d2ffdfe00b96998f4ba5e69f6cfe233</citedby><cites>FETCH-LOGICAL-c395t-f3a9163f323fe662b5df1ba0dfb2178d05d2ffdfe00b96998f4ba5e69f6cfe233</cites><orcidid>0000-0001-9268-9789 ; 0000-0002-5318-1090 ; 0000000253181090 ; 0000000192689789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782520305922$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1776280$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambartsumyan, Ilona</creatorcontrib><creatorcontrib>Khattatov, Eldar</creatorcontrib><creatorcontrib>Yotov, Ivan</creatorcontrib><title>A coupled multipoint stress–multipoint flux mixed finite element method for the Biot system of poroelasticity</title><title>Computer methods in applied mechanics and engineering</title><description>We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces to a cell-centered pressure–displacement system on simplicial and quadrilateral grids. A mixed stress–displacement–rotation formulation for elasticity with weak stress symmetry is coupled with a mixed velocity–pressure Darcy formulation. The spatial discretization is based on combining the multipoint stress mixed finite element (MSMFE) method for elasticity and the multipoint flux mixed finite element (MFMFE) method for Darcy flow. It uses the lowest order Brezzi–Douglas–Marini mixed finite element spaces for the poroelastic stress and Darcy velocity, piecewise constant displacement and pressure, and continuous piecewise linear or bilinear rotation. A vertex quadrature rule is applied to the velocity, stress, and stress–rotation bilinear forms, which block-diagonalizes the corresponding matrices and allows for local velocity, stress, and rotation elimination. This leads to a cell-centered positive-definite system for pressure and displacement at each time step. We perform error analysis for the semidiscrete and fully discrete formulations, establishing first order convergence for all variables in their natural norms. The numerical tests confirm the theoretical convergence rates and illustrate the locking-free property of the method.</description><subject>Cell-centered finite differences</subject><subject>Convergence</subject><subject>Displacement</subject><subject>Elasticity</subject><subject>Error analysis</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Locking</subject><subject>Mixed finite elements</subject><subject>Multipoint flux</subject><subject>Multipoint stress</subject><subject>Norms</subject><subject>Poroelasticity</subject><subject>Quadratures</subject><subject>Quadrilaterals</subject><subject>Rotation</subject><subject>Velocity</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjA-gsqLP4sbETUQHiJa1EA7WVOGOtV0kcbAexHf_AH_IlOAoFFW4sj8-duXMROqNkSQkVl9ul7qolIyy9KV8RuYcWtJBlxigv9tGCkFWeyYLlh-gohC1Jp6Bsgdw11m4cWmhwN7bRDs72EYfoIYTvz68_NdOOH7izH4k0trcRMLTQQfrpIG5cqjqP4wbwjXWpwy5E6LAzeHDeQVuFaLWNuxN0YKo2wOnvfYxe7-9ebh-z9fPD0-31OtO8zGNmeFVSwQ1n3IAQrM4bQ-uKNKZmVBYNyRtmTGOAkLoUZVmYVV3lIEojtAHG-TE6n_u6NFiFNBr0Rru-Bx0VlVKwgiToYoYG795GCFFt3ej75EuxlZSSFFJMFJ0p7V0IHowavO0qv1OUqCl8tVUpfDWFr-bwk-Zq1kDa8d2CnyxAr6GxfnLQOPuP-gfZbY-r</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ambartsumyan, Ilona</creator><creator>Khattatov, Eldar</creator><creator>Yotov, Ivan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9268-9789</orcidid><orcidid>https://orcid.org/0000-0002-5318-1090</orcidid><orcidid>https://orcid.org/0000000253181090</orcidid><orcidid>https://orcid.org/0000000192689789</orcidid></search><sort><creationdate>20201201</creationdate><title>A coupled multipoint stress–multipoint flux mixed finite element method for the Biot system of poroelasticity</title><author>Ambartsumyan, Ilona ; Khattatov, Eldar ; Yotov, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f3a9163f323fe662b5df1ba0dfb2178d05d2ffdfe00b96998f4ba5e69f6cfe233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell-centered finite differences</topic><topic>Convergence</topic><topic>Displacement</topic><topic>Elasticity</topic><topic>Error analysis</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Locking</topic><topic>Mixed finite elements</topic><topic>Multipoint flux</topic><topic>Multipoint stress</topic><topic>Norms</topic><topic>Poroelasticity</topic><topic>Quadratures</topic><topic>Quadrilaterals</topic><topic>Rotation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambartsumyan, Ilona</creatorcontrib><creatorcontrib>Khattatov, Eldar</creatorcontrib><creatorcontrib>Yotov, Ivan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambartsumyan, Ilona</au><au>Khattatov, Eldar</au><au>Yotov, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coupled multipoint stress–multipoint flux mixed finite element method for the Biot system of poroelasticity</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>372</volume><issue>C</issue><spage>113407</spage><pages>113407-</pages><artnum>113407</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces to a cell-centered pressure–displacement system on simplicial and quadrilateral grids. A mixed stress–displacement–rotation formulation for elasticity with weak stress symmetry is coupled with a mixed velocity–pressure Darcy formulation. The spatial discretization is based on combining the multipoint stress mixed finite element (MSMFE) method for elasticity and the multipoint flux mixed finite element (MFMFE) method for Darcy flow. It uses the lowest order Brezzi–Douglas–Marini mixed finite element spaces for the poroelastic stress and Darcy velocity, piecewise constant displacement and pressure, and continuous piecewise linear or bilinear rotation. A vertex quadrature rule is applied to the velocity, stress, and stress–rotation bilinear forms, which block-diagonalizes the corresponding matrices and allows for local velocity, stress, and rotation elimination. This leads to a cell-centered positive-definite system for pressure and displacement at each time step. We perform error analysis for the semidiscrete and fully discrete formulations, establishing first order convergence for all variables in their natural norms. The numerical tests confirm the theoretical convergence rates and illustrate the locking-free property of the method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.113407</doi><orcidid>https://orcid.org/0000-0001-9268-9789</orcidid><orcidid>https://orcid.org/0000-0002-5318-1090</orcidid><orcidid>https://orcid.org/0000000253181090</orcidid><orcidid>https://orcid.org/0000000192689789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-12, Vol.372 (C), p.113407, Article 113407
issn 0045-7825
1879-2138
language eng
recordid cdi_osti_scitechconnect_1776280
source Elsevier ScienceDirect Journals
subjects Cell-centered finite differences
Convergence
Displacement
Elasticity
Error analysis
Finite element analysis
Finite element method
Locking
Mixed finite elements
Multipoint flux
Multipoint stress
Norms
Poroelasticity
Quadratures
Quadrilaterals
Rotation
Velocity
title A coupled multipoint stress–multipoint flux mixed finite element method for the Biot system of poroelasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coupled%20multipoint%20stress%E2%80%93multipoint%20flux%20mixed%20finite%20element%20method%20for%20the%20Biot%20system%20of%20poroelasticity&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ambartsumyan,%20Ilona&rft.date=2020-12-01&rft.volume=372&rft.issue=C&rft.spage=113407&rft.pages=113407-&rft.artnum=113407&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.113407&rft_dat=%3Cproquest_osti_%3E2477708760%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477708760&rft_id=info:pmid/&rft_els_id=S0045782520305922&rfr_iscdi=true