Learning constitutive relations using symmetric positive definite neural networks
We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2021-03, Vol.428 (C), p.110072, Article 110072 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!