Learning constitutive relations using symmetric positive definite neural networks
We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2021-03, Vol.428 (C), p.110072, Article 110072 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 110072 |
container_title | Journal of computational physics |
container_volume | 428 |
creator | Xu, Kailai Huang, Daniel Z. Darve, Eric |
description | We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications.
•Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates. |
doi_str_mv | 10.1016/j.jcp.2020.110072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120308469</els_id><sourcerecordid>2489020521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG9Fz11n0qZt8CSLX7Aggp5DN51o6m67Jqmy_97UevY0JHnf8MzD2DnCAgGLq3bR6t2CA49nBCj5AZshSEh5icUhmwFwTKWUeMxOvG8BoBJ5NWPPK6pdZ7u3RPedDzYMwX5R4mhTBxtvksGPj36_3VJwVie73tvfSEPGdjZQ0tHg6k0c4bt3H_6UHZl64-nsb87Z693ty_IhXT3dPy5vVqnOpAhpY0QBddNArkUOa0GUY5UJMLJYr7E0VZ5zrFCYpuR1vq44YQa1gTLDIqPSZHN2Mf3bR2zldUTR73GJjnRQWJZCchlDl1No5_rPgXxQbT-4LnIpnlcy6hIcYwqnlHa9946M2jm7rd1eIahRr2pV1KtGvWrSGzvXU4fijl-W3IhAnabGupGg6e0_7R9kaYKr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489020521</pqid></control><display><type>article</type><title>Learning constitutive relations using symmetric positive definite neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Kailai ; Huang, Daniel Z. ; Darve, Eric</creator><creatorcontrib>Xu, Kailai ; Huang, Daniel Z. ; Darve, Eric</creatorcontrib><description>We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications.
•Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.110072</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Computer architecture ; Constitutive relationships ; Convexity ; Criteria ; Fiber reinforced plastics ; Finite element method ; Hyperelasticity ; Multiscale homogenization ; Neural networks ; Numerical stability ; Plasticity ; Reinforced plates ; Robustness (mathematics) ; Solid mechanics ; Stiffness matrix ; Strain ; Training</subject><ispartof>Journal of computational physics, 2021-03, Vol.428 (C), p.110072, Article 110072</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Mar 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</citedby><cites>FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</cites><orcidid>0000-0002-1938-3836 ; 0000-0003-3405-638X ; 0000-0001-6072-9352 ; 0000000160729352 ; 0000000219383836 ; 000000033405638X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2020.110072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775929$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Kailai</creatorcontrib><creatorcontrib>Huang, Daniel Z.</creatorcontrib><creatorcontrib>Darve, Eric</creatorcontrib><title>Learning constitutive relations using symmetric positive definite neural networks</title><title>Journal of computational physics</title><description>We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications.
•Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates.</description><subject>Computational physics</subject><subject>Computer architecture</subject><subject>Constitutive relationships</subject><subject>Convexity</subject><subject>Criteria</subject><subject>Fiber reinforced plastics</subject><subject>Finite element method</subject><subject>Hyperelasticity</subject><subject>Multiscale homogenization</subject><subject>Neural networks</subject><subject>Numerical stability</subject><subject>Plasticity</subject><subject>Reinforced plates</subject><subject>Robustness (mathematics)</subject><subject>Solid mechanics</subject><subject>Stiffness matrix</subject><subject>Strain</subject><subject>Training</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG9Fz11n0qZt8CSLX7Aggp5DN51o6m67Jqmy_97UevY0JHnf8MzD2DnCAgGLq3bR6t2CA49nBCj5AZshSEh5icUhmwFwTKWUeMxOvG8BoBJ5NWPPK6pdZ7u3RPedDzYMwX5R4mhTBxtvksGPj36_3VJwVie73tvfSEPGdjZQ0tHg6k0c4bt3H_6UHZl64-nsb87Z693ty_IhXT3dPy5vVqnOpAhpY0QBddNArkUOa0GUY5UJMLJYr7E0VZ5zrFCYpuR1vq44YQa1gTLDIqPSZHN2Mf3bR2zldUTR73GJjnRQWJZCchlDl1No5_rPgXxQbT-4LnIpnlcy6hIcYwqnlHa9946M2jm7rd1eIahRr2pV1KtGvWrSGzvXU4fijl-W3IhAnabGupGg6e0_7R9kaYKr</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Xu, Kailai</creator><creator>Huang, Daniel Z.</creator><creator>Darve, Eric</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1938-3836</orcidid><orcidid>https://orcid.org/0000-0003-3405-638X</orcidid><orcidid>https://orcid.org/0000-0001-6072-9352</orcidid><orcidid>https://orcid.org/0000000160729352</orcidid><orcidid>https://orcid.org/0000000219383836</orcidid><orcidid>https://orcid.org/000000033405638X</orcidid></search><sort><creationdate>20210301</creationdate><title>Learning constitutive relations using symmetric positive definite neural networks</title><author>Xu, Kailai ; Huang, Daniel Z. ; Darve, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational physics</topic><topic>Computer architecture</topic><topic>Constitutive relationships</topic><topic>Convexity</topic><topic>Criteria</topic><topic>Fiber reinforced plastics</topic><topic>Finite element method</topic><topic>Hyperelasticity</topic><topic>Multiscale homogenization</topic><topic>Neural networks</topic><topic>Numerical stability</topic><topic>Plasticity</topic><topic>Reinforced plates</topic><topic>Robustness (mathematics)</topic><topic>Solid mechanics</topic><topic>Stiffness matrix</topic><topic>Strain</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kailai</creatorcontrib><creatorcontrib>Huang, Daniel Z.</creatorcontrib><creatorcontrib>Darve, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kailai</au><au>Huang, Daniel Z.</au><au>Darve, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning constitutive relations using symmetric positive definite neural networks</atitle><jtitle>Journal of computational physics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>428</volume><issue>C</issue><spage>110072</spage><pages>110072-</pages><artnum>110072</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications.
•Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.110072</doi><orcidid>https://orcid.org/0000-0002-1938-3836</orcidid><orcidid>https://orcid.org/0000-0003-3405-638X</orcidid><orcidid>https://orcid.org/0000-0001-6072-9352</orcidid><orcidid>https://orcid.org/0000000160729352</orcidid><orcidid>https://orcid.org/0000000219383836</orcidid><orcidid>https://orcid.org/000000033405638X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2021-03, Vol.428 (C), p.110072, Article 110072 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1775929 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computational physics Computer architecture Constitutive relationships Convexity Criteria Fiber reinforced plastics Finite element method Hyperelasticity Multiscale homogenization Neural networks Numerical stability Plasticity Reinforced plates Robustness (mathematics) Solid mechanics Stiffness matrix Strain Training |
title | Learning constitutive relations using symmetric positive definite neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20constitutive%20relations%20using%20symmetric%20positive%20definite%20neural%20networks&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Xu,%20Kailai&rft.date=2021-03-01&rft.volume=428&rft.issue=C&rft.spage=110072&rft.pages=110072-&rft.artnum=110072&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.110072&rft_dat=%3Cproquest_osti_%3E2489020521%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489020521&rft_id=info:pmid/&rft_els_id=S0021999120308469&rfr_iscdi=true |