Learning constitutive relations using symmetric positive definite neural networks

We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2021-03, Vol.428 (C), p.110072, Article 110072
Hauptverfasser: Xu, Kailai, Huang, Daniel Z., Darve, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 110072
container_title Journal of computational physics
container_volume 428
creator Xu, Kailai
Huang, Daniel Z.
Darve, Eric
description We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications. •Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates.
doi_str_mv 10.1016/j.jcp.2020.110072
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120308469</els_id><sourcerecordid>2489020521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG9Fz11n0qZt8CSLX7Aggp5DN51o6m67Jqmy_97UevY0JHnf8MzD2DnCAgGLq3bR6t2CA49nBCj5AZshSEh5icUhmwFwTKWUeMxOvG8BoBJ5NWPPK6pdZ7u3RPedDzYMwX5R4mhTBxtvksGPj36_3VJwVie73tvfSEPGdjZQ0tHg6k0c4bt3H_6UHZl64-nsb87Z693ty_IhXT3dPy5vVqnOpAhpY0QBddNArkUOa0GUY5UJMLJYr7E0VZ5zrFCYpuR1vq44YQa1gTLDIqPSZHN2Mf3bR2zldUTR73GJjnRQWJZCchlDl1No5_rPgXxQbT-4LnIpnlcy6hIcYwqnlHa9946M2jm7rd1eIahRr2pV1KtGvWrSGzvXU4fijl-W3IhAnabGupGg6e0_7R9kaYKr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489020521</pqid></control><display><type>article</type><title>Learning constitutive relations using symmetric positive definite neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Kailai ; Huang, Daniel Z. ; Darve, Eric</creator><creatorcontrib>Xu, Kailai ; Huang, Daniel Z. ; Darve, Eric</creatorcontrib><description>We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications. •Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.110072</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Computer architecture ; Constitutive relationships ; Convexity ; Criteria ; Fiber reinforced plastics ; Finite element method ; Hyperelasticity ; Multiscale homogenization ; Neural networks ; Numerical stability ; Plasticity ; Reinforced plates ; Robustness (mathematics) ; Solid mechanics ; Stiffness matrix ; Strain ; Training</subject><ispartof>Journal of computational physics, 2021-03, Vol.428 (C), p.110072, Article 110072</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Mar 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</citedby><cites>FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</cites><orcidid>0000-0002-1938-3836 ; 0000-0003-3405-638X ; 0000-0001-6072-9352 ; 0000000160729352 ; 0000000219383836 ; 000000033405638X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2020.110072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775929$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Kailai</creatorcontrib><creatorcontrib>Huang, Daniel Z.</creatorcontrib><creatorcontrib>Darve, Eric</creatorcontrib><title>Learning constitutive relations using symmetric positive definite neural networks</title><title>Journal of computational physics</title><description>We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications. •Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates.</description><subject>Computational physics</subject><subject>Computer architecture</subject><subject>Constitutive relationships</subject><subject>Convexity</subject><subject>Criteria</subject><subject>Fiber reinforced plastics</subject><subject>Finite element method</subject><subject>Hyperelasticity</subject><subject>Multiscale homogenization</subject><subject>Neural networks</subject><subject>Numerical stability</subject><subject>Plasticity</subject><subject>Reinforced plates</subject><subject>Robustness (mathematics)</subject><subject>Solid mechanics</subject><subject>Stiffness matrix</subject><subject>Strain</subject><subject>Training</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG9Fz11n0qZt8CSLX7Aggp5DN51o6m67Jqmy_97UevY0JHnf8MzD2DnCAgGLq3bR6t2CA49nBCj5AZshSEh5icUhmwFwTKWUeMxOvG8BoBJ5NWPPK6pdZ7u3RPedDzYMwX5R4mhTBxtvksGPj36_3VJwVie73tvfSEPGdjZQ0tHg6k0c4bt3H_6UHZl64-nsb87Z693ty_IhXT3dPy5vVqnOpAhpY0QBddNArkUOa0GUY5UJMLJYr7E0VZ5zrFCYpuR1vq44YQa1gTLDIqPSZHN2Mf3bR2zldUTR73GJjnRQWJZCchlDl1No5_rPgXxQbT-4LnIpnlcy6hIcYwqnlHa9946M2jm7rd1eIahRr2pV1KtGvWrSGzvXU4fijl-W3IhAnabGupGg6e0_7R9kaYKr</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Xu, Kailai</creator><creator>Huang, Daniel Z.</creator><creator>Darve, Eric</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1938-3836</orcidid><orcidid>https://orcid.org/0000-0003-3405-638X</orcidid><orcidid>https://orcid.org/0000-0001-6072-9352</orcidid><orcidid>https://orcid.org/0000000160729352</orcidid><orcidid>https://orcid.org/0000000219383836</orcidid><orcidid>https://orcid.org/000000033405638X</orcidid></search><sort><creationdate>20210301</creationdate><title>Learning constitutive relations using symmetric positive definite neural networks</title><author>Xu, Kailai ; Huang, Daniel Z. ; Darve, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-df560add04c540b5ee418350f96bb17f84421815fd72a4b82e130af073163e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational physics</topic><topic>Computer architecture</topic><topic>Constitutive relationships</topic><topic>Convexity</topic><topic>Criteria</topic><topic>Fiber reinforced plastics</topic><topic>Finite element method</topic><topic>Hyperelasticity</topic><topic>Multiscale homogenization</topic><topic>Neural networks</topic><topic>Numerical stability</topic><topic>Plasticity</topic><topic>Reinforced plates</topic><topic>Robustness (mathematics)</topic><topic>Solid mechanics</topic><topic>Stiffness matrix</topic><topic>Strain</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kailai</creatorcontrib><creatorcontrib>Huang, Daniel Z.</creatorcontrib><creatorcontrib>Darve, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kailai</au><au>Huang, Daniel Z.</au><au>Darve, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning constitutive relations using symmetric positive definite neural networks</atitle><jtitle>Journal of computational physics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>428</volume><issue>C</issue><spage>110072</spage><pages>110072-</pages><artnum>110072</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies the second order work criterion (Hill's criterion) and time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive modeling applications. •Novel method for learning neural-network-based constitutive relations.•Modeled hyperelasticity, elasto-plasticity and multi-scale models with deep neural networks.•Novel neural network architecture, SPD-NN, with improved stability property.•Analyzed the sensitivity of deep neural network architectures for constitutive modeling.•Accelerated multi-scale modeling with neural-network-based surrogates.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.110072</doi><orcidid>https://orcid.org/0000-0002-1938-3836</orcidid><orcidid>https://orcid.org/0000-0003-3405-638X</orcidid><orcidid>https://orcid.org/0000-0001-6072-9352</orcidid><orcidid>https://orcid.org/0000000160729352</orcidid><orcidid>https://orcid.org/0000000219383836</orcidid><orcidid>https://orcid.org/000000033405638X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-03, Vol.428 (C), p.110072, Article 110072
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1775929
source Elsevier ScienceDirect Journals Complete
subjects Computational physics
Computer architecture
Constitutive relationships
Convexity
Criteria
Fiber reinforced plastics
Finite element method
Hyperelasticity
Multiscale homogenization
Neural networks
Numerical stability
Plasticity
Reinforced plates
Robustness (mathematics)
Solid mechanics
Stiffness matrix
Strain
Training
title Learning constitutive relations using symmetric positive definite neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20constitutive%20relations%20using%20symmetric%20positive%20definite%20neural%20networks&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Xu,%20Kailai&rft.date=2021-03-01&rft.volume=428&rft.issue=C&rft.spage=110072&rft.pages=110072-&rft.artnum=110072&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.110072&rft_dat=%3Cproquest_osti_%3E2489020521%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489020521&rft_id=info:pmid/&rft_els_id=S0021999120308469&rfr_iscdi=true