A computational model for nanosecond pulse laser-plasma interactions

A multi-physics numerical model for laser-induced optical breakdown and laser-plasma interaction in a non-equilibrium gas is presented, accounting for: production of priming electrons via multi-photon ionization, energy absorption, cascade ionization, induced hydrodynamic response, and shock formati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-04, Vol.406 (C), p.109190, Article 109190
Hauptverfasser: Munafò, Alessandro, Alberti, Andrea, Pantano, Carlos, Freund, Jonathan B., Panesi, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 109190
container_title Journal of computational physics
container_volume 406
creator Munafò, Alessandro
Alberti, Andrea
Pantano, Carlos
Freund, Jonathan B.
Panesi, Marco
description A multi-physics numerical model for laser-induced optical breakdown and laser-plasma interaction in a non-equilibrium gas is presented, accounting for: production of priming electrons via multi-photon ionization, energy absorption, cascade ionization, induced hydrodynamic response, and shock formation and propagation. The gas is governed by the Navier-Stokes equations, with non-equilibrium effects taken into account by means of a two-temperature model. The space-time dependence of the laser beam is modeled with a flux-tube formulation for the Radiative Transfer Equation. The flow governing equations are discretized in space using a second-order finite volume method. The semi-discrete equations are marched in time using an implicit-explicit (IMEX) dual time-stepping strategy, where diffusion and chemistry are solved implicitly, whereas convection is explicit. Application to a 20 ns long 50 mJ pulse laser-induced breakdown in quiescent O2 shows the advantages of this temporal discretization during and just after the laser pulse, while a less-expensive symmetric Strang splitting (with implicit chemistry) is sufficient for the post-breakdown gas dynamics after ≃ 0.1 μs. The integrated model is shown to reproduce key features of corresponding experiments. •Benefit of implicit-explicit (IMEX) time marching to tackle stiffness.•Strang splitting possible choice for post-discharge gasdynamics.•Crucial role played by multiphoton ionization for optical breakdown.
doi_str_mv 10.1016/j.jcp.2019.109190
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119308952</els_id><sourcerecordid>2441886344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-50b6f5eb9029d179bceda8c4ccf85ddefd448e60b30e6a66b80a11ae7aeedd213</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG9Fz12TNk0TPC3rX1jwoueQJlNMaZuapILf3pR69jQz8HvDew-ha4J3BBN21-06Pe0KTES6BRH4BG3SgvOiJuwUbTAuSC6EIOfoIoQOY8wryjfoYZ9pN0xzVNG6UfXZ4Az0Wet8NqrRBdBuNNk09wGyXgXw-ZTGoDI7RvBKL6pwic5alYirv7lFH0-P74eX_Pj2_HrYH3NdiirmFW5YW0EjcCEMqUWjwSiuqdYtr4yB1lDKgeGmxMAUYw3HihAFtQIwpiDlFt2sf12IVgZtI-jPZHAEHSWp64oLmqDbFZq8-5ohRNm52adoQRaUEs5ZSReKrJT2LgQPrZy8HZT_kQTLpVHZydSoXBqVa6NJc79qIGX8tuAXCzCmFNYvDoyz_6h_ARvnfvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886344</pqid></control><display><type>article</type><title>A computational model for nanosecond pulse laser-plasma interactions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Munafò, Alessandro ; Alberti, Andrea ; Pantano, Carlos ; Freund, Jonathan B. ; Panesi, Marco</creator><creatorcontrib>Munafò, Alessandro ; Alberti, Andrea ; Pantano, Carlos ; Freund, Jonathan B. ; Panesi, Marco</creatorcontrib><description>A multi-physics numerical model for laser-induced optical breakdown and laser-plasma interaction in a non-equilibrium gas is presented, accounting for: production of priming electrons via multi-photon ionization, energy absorption, cascade ionization, induced hydrodynamic response, and shock formation and propagation. The gas is governed by the Navier-Stokes equations, with non-equilibrium effects taken into account by means of a two-temperature model. The space-time dependence of the laser beam is modeled with a flux-tube formulation for the Radiative Transfer Equation. The flow governing equations are discretized in space using a second-order finite volume method. The semi-discrete equations are marched in time using an implicit-explicit (IMEX) dual time-stepping strategy, where diffusion and chemistry are solved implicitly, whereas convection is explicit. Application to a 20 ns long 50 mJ pulse laser-induced breakdown in quiescent O2 shows the advantages of this temporal discretization during and just after the laser pulse, while a less-expensive symmetric Strang splitting (with implicit chemistry) is sufficient for the post-breakdown gas dynamics after ≃ 0.1 μs. The integrated model is shown to reproduce key features of corresponding experiments. •Benefit of implicit-explicit (IMEX) time marching to tackle stiffness.•Strang splitting possible choice for post-discharge gasdynamics.•Crucial role played by multiphoton ionization for optical breakdown.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.109190</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational fluid dynamics ; Computational physics ; Convection ; Discretization ; Energy absorption ; Finite volume method ; Gas dynamics ; IMEX methods ; Ionization ; Laser beams ; Laser induced breakdown ; Laser plasma interactions ; Lasers ; Mathematical models ; Multi-photon ionization ; Nanosecond pulses ; Non-equilibrium gas dynamics ; Numerical models ; Operator splitting ; Plasma interactions ; Priming ; Radiation transport ; Radiative transfer ; Temperature dependence ; Time dependence</subject><ispartof>Journal of computational physics, 2020-04, Vol.406 (C), p.109190, Article 109190</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-50b6f5eb9029d179bceda8c4ccf85ddefd448e60b30e6a66b80a11ae7aeedd213</citedby><cites>FETCH-LOGICAL-c395t-50b6f5eb9029d179bceda8c4ccf85ddefd448e60b30e6a66b80a11ae7aeedd213</cites><orcidid>0000-0003-1724-6034 ; 0000000317246034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999119308952$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775894$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Munafò, Alessandro</creatorcontrib><creatorcontrib>Alberti, Andrea</creatorcontrib><creatorcontrib>Pantano, Carlos</creatorcontrib><creatorcontrib>Freund, Jonathan B.</creatorcontrib><creatorcontrib>Panesi, Marco</creatorcontrib><title>A computational model for nanosecond pulse laser-plasma interactions</title><title>Journal of computational physics</title><description>A multi-physics numerical model for laser-induced optical breakdown and laser-plasma interaction in a non-equilibrium gas is presented, accounting for: production of priming electrons via multi-photon ionization, energy absorption, cascade ionization, induced hydrodynamic response, and shock formation and propagation. The gas is governed by the Navier-Stokes equations, with non-equilibrium effects taken into account by means of a two-temperature model. The space-time dependence of the laser beam is modeled with a flux-tube formulation for the Radiative Transfer Equation. The flow governing equations are discretized in space using a second-order finite volume method. The semi-discrete equations are marched in time using an implicit-explicit (IMEX) dual time-stepping strategy, where diffusion and chemistry are solved implicitly, whereas convection is explicit. Application to a 20 ns long 50 mJ pulse laser-induced breakdown in quiescent O2 shows the advantages of this temporal discretization during and just after the laser pulse, while a less-expensive symmetric Strang splitting (with implicit chemistry) is sufficient for the post-breakdown gas dynamics after ≃ 0.1 μs. The integrated model is shown to reproduce key features of corresponding experiments. •Benefit of implicit-explicit (IMEX) time marching to tackle stiffness.•Strang splitting possible choice for post-discharge gasdynamics.•Crucial role played by multiphoton ionization for optical breakdown.</description><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Convection</subject><subject>Discretization</subject><subject>Energy absorption</subject><subject>Finite volume method</subject><subject>Gas dynamics</subject><subject>IMEX methods</subject><subject>Ionization</subject><subject>Laser beams</subject><subject>Laser induced breakdown</subject><subject>Laser plasma interactions</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Multi-photon ionization</subject><subject>Nanosecond pulses</subject><subject>Non-equilibrium gas dynamics</subject><subject>Numerical models</subject><subject>Operator splitting</subject><subject>Plasma interactions</subject><subject>Priming</subject><subject>Radiation transport</subject><subject>Radiative transfer</subject><subject>Temperature dependence</subject><subject>Time dependence</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG9Fz12TNk0TPC3rX1jwoueQJlNMaZuapILf3pR69jQz8HvDew-ha4J3BBN21-06Pe0KTES6BRH4BG3SgvOiJuwUbTAuSC6EIOfoIoQOY8wryjfoYZ9pN0xzVNG6UfXZ4Az0Wet8NqrRBdBuNNk09wGyXgXw-ZTGoDI7RvBKL6pwic5alYirv7lFH0-P74eX_Pj2_HrYH3NdiirmFW5YW0EjcCEMqUWjwSiuqdYtr4yB1lDKgeGmxMAUYw3HihAFtQIwpiDlFt2sf12IVgZtI-jPZHAEHSWp64oLmqDbFZq8-5ohRNm52adoQRaUEs5ZSReKrJT2LgQPrZy8HZT_kQTLpVHZydSoXBqVa6NJc79qIGX8tuAXCzCmFNYvDoyz_6h_ARvnfvA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Munafò, Alessandro</creator><creator>Alberti, Andrea</creator><creator>Pantano, Carlos</creator><creator>Freund, Jonathan B.</creator><creator>Panesi, Marco</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1724-6034</orcidid><orcidid>https://orcid.org/0000000317246034</orcidid></search><sort><creationdate>20200401</creationdate><title>A computational model for nanosecond pulse laser-plasma interactions</title><author>Munafò, Alessandro ; Alberti, Andrea ; Pantano, Carlos ; Freund, Jonathan B. ; Panesi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-50b6f5eb9029d179bceda8c4ccf85ddefd448e60b30e6a66b80a11ae7aeedd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Convection</topic><topic>Discretization</topic><topic>Energy absorption</topic><topic>Finite volume method</topic><topic>Gas dynamics</topic><topic>IMEX methods</topic><topic>Ionization</topic><topic>Laser beams</topic><topic>Laser induced breakdown</topic><topic>Laser plasma interactions</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Multi-photon ionization</topic><topic>Nanosecond pulses</topic><topic>Non-equilibrium gas dynamics</topic><topic>Numerical models</topic><topic>Operator splitting</topic><topic>Plasma interactions</topic><topic>Priming</topic><topic>Radiation transport</topic><topic>Radiative transfer</topic><topic>Temperature dependence</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munafò, Alessandro</creatorcontrib><creatorcontrib>Alberti, Andrea</creatorcontrib><creatorcontrib>Pantano, Carlos</creatorcontrib><creatorcontrib>Freund, Jonathan B.</creatorcontrib><creatorcontrib>Panesi, Marco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munafò, Alessandro</au><au>Alberti, Andrea</au><au>Pantano, Carlos</au><au>Freund, Jonathan B.</au><au>Panesi, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational model for nanosecond pulse laser-plasma interactions</atitle><jtitle>Journal of computational physics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>406</volume><issue>C</issue><spage>109190</spage><pages>109190-</pages><artnum>109190</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A multi-physics numerical model for laser-induced optical breakdown and laser-plasma interaction in a non-equilibrium gas is presented, accounting for: production of priming electrons via multi-photon ionization, energy absorption, cascade ionization, induced hydrodynamic response, and shock formation and propagation. The gas is governed by the Navier-Stokes equations, with non-equilibrium effects taken into account by means of a two-temperature model. The space-time dependence of the laser beam is modeled with a flux-tube formulation for the Radiative Transfer Equation. The flow governing equations are discretized in space using a second-order finite volume method. The semi-discrete equations are marched in time using an implicit-explicit (IMEX) dual time-stepping strategy, where diffusion and chemistry are solved implicitly, whereas convection is explicit. Application to a 20 ns long 50 mJ pulse laser-induced breakdown in quiescent O2 shows the advantages of this temporal discretization during and just after the laser pulse, while a less-expensive symmetric Strang splitting (with implicit chemistry) is sufficient for the post-breakdown gas dynamics after ≃ 0.1 μs. The integrated model is shown to reproduce key features of corresponding experiments. •Benefit of implicit-explicit (IMEX) time marching to tackle stiffness.•Strang splitting possible choice for post-discharge gasdynamics.•Crucial role played by multiphoton ionization for optical breakdown.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.109190</doi><orcidid>https://orcid.org/0000-0003-1724-6034</orcidid><orcidid>https://orcid.org/0000000317246034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2020-04, Vol.406 (C), p.109190, Article 109190
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1775894
source ScienceDirect Journals (5 years ago - present)
subjects Computational fluid dynamics
Computational physics
Convection
Discretization
Energy absorption
Finite volume method
Gas dynamics
IMEX methods
Ionization
Laser beams
Laser induced breakdown
Laser plasma interactions
Lasers
Mathematical models
Multi-photon ionization
Nanosecond pulses
Non-equilibrium gas dynamics
Numerical models
Operator splitting
Plasma interactions
Priming
Radiation transport
Radiative transfer
Temperature dependence
Time dependence
title A computational model for nanosecond pulse laser-plasma interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20model%20for%20nanosecond%20pulse%20laser-plasma%20interactions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Munaf%C3%B2,%20Alessandro&rft.date=2020-04-01&rft.volume=406&rft.issue=C&rft.spage=109190&rft.pages=109190-&rft.artnum=109190&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.109190&rft_dat=%3Cproquest_osti_%3E2441886344%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886344&rft_id=info:pmid/&rft_els_id=S0021999119308952&rfr_iscdi=true