Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes

Homogenization of mechanical properties of a heterogeneous material using analytical/semi-analytical micromechanics approaches is computationally less expensive than that through numerical techniques. However, analytical methods cannot be easily applied to a complex distribution of the microstructur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2020-10, Vol.125 (C), p.103539, Article 103539
Hauptverfasser: Gopinath, G., Batra, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 103539
container_title International journal of non-linear mechanics
container_volume 125
creator Gopinath, G.
Batra, R.C.
description Homogenization of mechanical properties of a heterogeneous material using analytical/semi-analytical micromechanics approaches is computationally less expensive than that through numerical techniques. However, analytical methods cannot be easily applied to a complex distribution of the microstructure in a unit cell (or a representative volume element). Here, we alleviate this by accommodating cuboidal and wedge shaped sub-volumes in the Fourier series approach (FSA). This is akin to using penta- and hexa-hedral elements to discretize the geometry in 3-dimensional finite element analysis (FEA). The technique is applied to study the elasto-plastic response of unidirectional fiber/yarn-reinforced composites with square, circular and star shaped fibers to transverse loading. It is shown that (i) predicted transverse elastic modulus and the shear moduli are sensitive to the fiber shape and the unit cell configuration, (ii) the stress–strain curves for the homogenized composite agree with those reported in the literature found by using the FEA, and (iii) the presently computed elastic constants for plain and 2/2 twill weave fabrics are close to those found by other methods and deduced from the test data. A linear softening model based on plasticity approach is implemented within the FSA to predict failure and progressive softening in the yarn and the resin. It captures the nonlinear response and provides the ultimate strength under tensile loading. •Introduction of wedge and cuboidal sub-volumes to homogenize and analyze complex micro-structures using Fourier Series Approach.•Dependence upon fiber shape and unit cell configuration of the elasto-plastic response of unidirectional fiber reinforced composite to transverse loading.•Prediction of elastic constants of fiber reinforced composite as a function of fiber volume fraction.•Prediction of elastic constants and ultimate strength of plain and 2/2 twill weave.
doi_str_mv 10.1016/j.ijnonlinmec.2020.103539
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746220302018</els_id><sourcerecordid>2448686732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-fa90ebbda6a3b8801c73e3dd751bd6346dd031f43266be906ab691cc656695a13</originalsourceid><addsrcrecordid>eNqNUc1u1DAYtBBIXUrfwcA5u3ac2MkRrWhBqgSH9mz558uuo6y92E6hN96BJ-DVeBIcQiWOnD7JnplvvhmEXlOypYTy3bh1ow9-cv4EZluTenlnLeufoQ3tRFe1nHXP0YaUn0o0vL5AL1MaSeE2RGzQz88RrDPZBY_DgGFSKTuDT8HOk8PKWzxP2Z1UBpxyBH_IxwU3OA1x96iiryI4P4RowD6xf33_cX7SUTm6b3hOzh_wdZijg4gTlJGwOp9jUOb4Z4uZdXBWTbuvYA9l16yrhzDNJ0iv0ItBTQmu_s5LdH_9_m7_obr9dPNx_-62Mk0tcjWonoDWVnHFdNcRagQDZq1oqbacNdxawujQsJpzDT3hSvOeGsNbzvtWUXaJ3qy6oTiXybgM5miC92CypEK0XbuA3q6gYv3LDCnLsRzliy9ZN03HOy5YXVD9ijIxpBRhkOdYMoyPkhK51CZH-U9tcqlNrrUV7n7lQrn1ocS1WAFf4nVxcWKD-w-V3yiKq-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448686732</pqid></control><display><type>article</type><title>Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes</title><source>Elsevier ScienceDirect Journals</source><creator>Gopinath, G. ; Batra, R.C.</creator><creatorcontrib>Gopinath, G. ; Batra, R.C.</creatorcontrib><description>Homogenization of mechanical properties of a heterogeneous material using analytical/semi-analytical micromechanics approaches is computationally less expensive than that through numerical techniques. However, analytical methods cannot be easily applied to a complex distribution of the microstructure in a unit cell (or a representative volume element). Here, we alleviate this by accommodating cuboidal and wedge shaped sub-volumes in the Fourier series approach (FSA). This is akin to using penta- and hexa-hedral elements to discretize the geometry in 3-dimensional finite element analysis (FEA). The technique is applied to study the elasto-plastic response of unidirectional fiber/yarn-reinforced composites with square, circular and star shaped fibers to transverse loading. It is shown that (i) predicted transverse elastic modulus and the shear moduli are sensitive to the fiber shape and the unit cell configuration, (ii) the stress–strain curves for the homogenized composite agree with those reported in the literature found by using the FEA, and (iii) the presently computed elastic constants for plain and 2/2 twill weave fabrics are close to those found by other methods and deduced from the test data. A linear softening model based on plasticity approach is implemented within the FSA to predict failure and progressive softening in the yarn and the resin. It captures the nonlinear response and provides the ultimate strength under tensile loading. •Introduction of wedge and cuboidal sub-volumes to homogenize and analyze complex micro-structures using Fourier Series Approach.•Dependence upon fiber shape and unit cell configuration of the elasto-plastic response of unidirectional fiber reinforced composite to transverse loading.•Prediction of elastic constants of fiber reinforced composite as a function of fiber volume fraction.•Prediction of elastic constants and ultimate strength of plain and 2/2 twill weave.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2020.103539</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Dimensional analysis ; Elastic properties ; Elastic–plastic matrix ; Fiber shape ; Finite element method ; Fourier series ; Fourier series analysis ; Homogenization ; Mathematical analysis ; Mechanical properties ; Micromechanics ; Modulus of elasticity ; Nonlinear response ; Plain/twill weave ; Polymer matrix composites ; Shear modulus ; Softening ; Strain ; Transverse loads ; Ultimate tensile strength ; Unidirectional composites ; Unit cell ; Wedges ; Yarn</subject><ispartof>International journal of non-linear mechanics, 2020-10, Vol.125 (C), p.103539, Article 103539</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-fa90ebbda6a3b8801c73e3dd751bd6346dd031f43266be906ab691cc656695a13</citedby><cites>FETCH-LOGICAL-c427t-fa90ebbda6a3b8801c73e3dd751bd6346dd031f43266be906ab691cc656695a13</cites><orcidid>0000-0001-9894-1711 ; 0000000198941711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746220302018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775851$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gopinath, G.</creatorcontrib><creatorcontrib>Batra, R.C.</creatorcontrib><title>Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes</title><title>International journal of non-linear mechanics</title><description>Homogenization of mechanical properties of a heterogeneous material using analytical/semi-analytical micromechanics approaches is computationally less expensive than that through numerical techniques. However, analytical methods cannot be easily applied to a complex distribution of the microstructure in a unit cell (or a representative volume element). Here, we alleviate this by accommodating cuboidal and wedge shaped sub-volumes in the Fourier series approach (FSA). This is akin to using penta- and hexa-hedral elements to discretize the geometry in 3-dimensional finite element analysis (FEA). The technique is applied to study the elasto-plastic response of unidirectional fiber/yarn-reinforced composites with square, circular and star shaped fibers to transverse loading. It is shown that (i) predicted transverse elastic modulus and the shear moduli are sensitive to the fiber shape and the unit cell configuration, (ii) the stress–strain curves for the homogenized composite agree with those reported in the literature found by using the FEA, and (iii) the presently computed elastic constants for plain and 2/2 twill weave fabrics are close to those found by other methods and deduced from the test data. A linear softening model based on plasticity approach is implemented within the FSA to predict failure and progressive softening in the yarn and the resin. It captures the nonlinear response and provides the ultimate strength under tensile loading. •Introduction of wedge and cuboidal sub-volumes to homogenize and analyze complex micro-structures using Fourier Series Approach.•Dependence upon fiber shape and unit cell configuration of the elasto-plastic response of unidirectional fiber reinforced composite to transverse loading.•Prediction of elastic constants of fiber reinforced composite as a function of fiber volume fraction.•Prediction of elastic constants and ultimate strength of plain and 2/2 twill weave.</description><subject>Dimensional analysis</subject><subject>Elastic properties</subject><subject>Elastic–plastic matrix</subject><subject>Fiber shape</subject><subject>Finite element method</subject><subject>Fourier series</subject><subject>Fourier series analysis</subject><subject>Homogenization</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Modulus of elasticity</subject><subject>Nonlinear response</subject><subject>Plain/twill weave</subject><subject>Polymer matrix composites</subject><subject>Shear modulus</subject><subject>Softening</subject><subject>Strain</subject><subject>Transverse loads</subject><subject>Ultimate tensile strength</subject><subject>Unidirectional composites</subject><subject>Unit cell</subject><subject>Wedges</subject><subject>Yarn</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUc1u1DAYtBBIXUrfwcA5u3ac2MkRrWhBqgSH9mz558uuo6y92E6hN96BJ-DVeBIcQiWOnD7JnplvvhmEXlOypYTy3bh1ow9-cv4EZluTenlnLeufoQ3tRFe1nHXP0YaUn0o0vL5AL1MaSeE2RGzQz88RrDPZBY_DgGFSKTuDT8HOk8PKWzxP2Z1UBpxyBH_IxwU3OA1x96iiryI4P4RowD6xf33_cX7SUTm6b3hOzh_wdZijg4gTlJGwOp9jUOb4Z4uZdXBWTbuvYA9l16yrhzDNJ0iv0ItBTQmu_s5LdH_9_m7_obr9dPNx_-62Mk0tcjWonoDWVnHFdNcRagQDZq1oqbacNdxawujQsJpzDT3hSvOeGsNbzvtWUXaJ3qy6oTiXybgM5miC92CypEK0XbuA3q6gYv3LDCnLsRzliy9ZN03HOy5YXVD9ijIxpBRhkOdYMoyPkhK51CZH-U9tcqlNrrUV7n7lQrn1ocS1WAFf4nVxcWKD-w-V3yiKq-Q</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Gopinath, G.</creator><creator>Batra, R.C.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9894-1711</orcidid><orcidid>https://orcid.org/0000000198941711</orcidid></search><sort><creationdate>202010</creationdate><title>Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes</title><author>Gopinath, G. ; Batra, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-fa90ebbda6a3b8801c73e3dd751bd6346dd031f43266be906ab691cc656695a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dimensional analysis</topic><topic>Elastic properties</topic><topic>Elastic–plastic matrix</topic><topic>Fiber shape</topic><topic>Finite element method</topic><topic>Fourier series</topic><topic>Fourier series analysis</topic><topic>Homogenization</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Modulus of elasticity</topic><topic>Nonlinear response</topic><topic>Plain/twill weave</topic><topic>Polymer matrix composites</topic><topic>Shear modulus</topic><topic>Softening</topic><topic>Strain</topic><topic>Transverse loads</topic><topic>Ultimate tensile strength</topic><topic>Unidirectional composites</topic><topic>Unit cell</topic><topic>Wedges</topic><topic>Yarn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopinath, G.</creatorcontrib><creatorcontrib>Batra, R.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopinath, G.</au><au>Batra, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2020-10</date><risdate>2020</risdate><volume>125</volume><issue>C</issue><spage>103539</spage><pages>103539-</pages><artnum>103539</artnum><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>Homogenization of mechanical properties of a heterogeneous material using analytical/semi-analytical micromechanics approaches is computationally less expensive than that through numerical techniques. However, analytical methods cannot be easily applied to a complex distribution of the microstructure in a unit cell (or a representative volume element). Here, we alleviate this by accommodating cuboidal and wedge shaped sub-volumes in the Fourier series approach (FSA). This is akin to using penta- and hexa-hedral elements to discretize the geometry in 3-dimensional finite element analysis (FEA). The technique is applied to study the elasto-plastic response of unidirectional fiber/yarn-reinforced composites with square, circular and star shaped fibers to transverse loading. It is shown that (i) predicted transverse elastic modulus and the shear moduli are sensitive to the fiber shape and the unit cell configuration, (ii) the stress–strain curves for the homogenized composite agree with those reported in the literature found by using the FEA, and (iii) the presently computed elastic constants for plain and 2/2 twill weave fabrics are close to those found by other methods and deduced from the test data. A linear softening model based on plasticity approach is implemented within the FSA to predict failure and progressive softening in the yarn and the resin. It captures the nonlinear response and provides the ultimate strength under tensile loading. •Introduction of wedge and cuboidal sub-volumes to homogenize and analyze complex micro-structures using Fourier Series Approach.•Dependence upon fiber shape and unit cell configuration of the elasto-plastic response of unidirectional fiber reinforced composite to transverse loading.•Prediction of elastic constants of fiber reinforced composite as a function of fiber volume fraction.•Prediction of elastic constants and ultimate strength of plain and 2/2 twill weave.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2020.103539</doi><orcidid>https://orcid.org/0000-0001-9894-1711</orcidid><orcidid>https://orcid.org/0000000198941711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2020-10, Vol.125 (C), p.103539, Article 103539
issn 0020-7462
1878-5638
language eng
recordid cdi_osti_scitechconnect_1775851
source Elsevier ScienceDirect Journals
subjects Dimensional analysis
Elastic properties
Elastic–plastic matrix
Fiber shape
Finite element method
Fourier series
Fourier series analysis
Homogenization
Mathematical analysis
Mechanical properties
Micromechanics
Modulus of elasticity
Nonlinear response
Plain/twill weave
Polymer matrix composites
Shear modulus
Softening
Strain
Transverse loads
Ultimate tensile strength
Unidirectional composites
Unit cell
Wedges
Yarn
title Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20elastic%20moduli%20and%20ultimate%20strength%20of%20fiber/yarn-reinforced%20elastic%E2%80%93plastic%20matrix%20using%20Fourier%20series%20approach%20and%20cuboidal/wedge%20sub-volumes&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Gopinath,%20G.&rft.date=2020-10&rft.volume=125&rft.issue=C&rft.spage=103539&rft.pages=103539-&rft.artnum=103539&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2020.103539&rft_dat=%3Cproquest_osti_%3E2448686732%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448686732&rft_id=info:pmid/&rft_els_id=S0020746220302018&rfr_iscdi=true