Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration
The energy optimization modeling work described here was performed to determine efficiency improvements that could be achieved for existing coal-fired power plants to retrofit a partial CO2 capture from the post-combustion flue gas for carbon sequestration through thermal integration. The work prese...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2021-01, Vol.283 (C), p.118940, Article 118940 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 118940 |
container_title | Fuel (Guildford) |
container_volume | 283 |
creator | Bravo, Julio Drapanauskaite, Donata Sarunac, Nenad Romero, Carlos Jesikiewicz, Thomas Baltrusaitis, Jonas |
description | The energy optimization modeling work described here was performed to determine efficiency improvements that could be achieved for existing coal-fired power plants to retrofit a partial CO2 capture from the post-combustion flue gas for carbon sequestration through thermal integration. The work presented includes optimization of the mono-ethanol amine (MEA)-based post-combustion CO2 capture to reduce energy requirements that could be achieved at existing power plants by thermal integration of the steam turbine cycle, boiler, CO2 compression train and post-combustion CO2 capture process to offset efficiency and capacity losses that would be incurred by retrofit or implementation of post-combustion CO2 capture. Partial CO2 capture, involving treatment of less than 100% of the flue gas leaving the plant and modular design of the CO2 scrubbing system, was also investigated. Thermal integration of the steam turbine cycle with boiler and CO2 compression train improved cycle and plant performance and offset, in part, the negative effects of post-combustion CO2 capture. The best-analyzed integration options improved gross power output by 5% and net unit efficiency by 1.57%, relative to the conventional MEA process. Operating with 40% CO2 capture increased gross power output by 11.6–14% (depending on the MEA thermal integration option), relative to the conventional MEA integration and 90% CO2 capture. The improvement in net unit performance is larger compared to the improvement in turbine cycle performance because of the CO2 compression work, which is also reduced by partial CO2 capture. |
doi_str_mv | 10.1016/j.fuel.2020.118940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120319360</els_id><sourcerecordid>2469842722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-19f5f03c6a2b35b28db9d261294a1b96f0774e356b1a0cd9709e5d499c7f68ec3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXQdcckvaQBNzJ4A2E2ug5pejKTYdp0knRAn97UunYVOHz_yX8-hG4oWVJCq_vd0oywXzLC0oDWoiAnaEFrnmeclvkpWpBEZSyv6Dm6CGFHCOF1WSzQsB6i7ey3itb12BkMPfjNF_ZwGK2HDvoYsHEer9YMDy7ETLuuGcMvrtUQRw948E5DCDhuvRs3W6zao-o1tGkAvlN7bPsIG__7xxU6M2of4PrvvUSfz08fq9fsff3ytnp8z3QuRMyoMKUhua4Ua_KyYXXbiJZVlIlC0UZUhnBeQF5WDVVEt4ITAWVbCKG5qWrQ-SW6nfemzlYGbSPorXZ9DzpKynnJa5qguxlKFxxGCFHu3Oj71EuyohJ1wThjiWIzpb0LwYORg7ed8l-SEjnplzs56ZeTfjnrT6GHOQTpyKMFP3WAyUrSmiq0zv4X_wFmd4-q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469842722</pqid></control><display><type>article</type><title>Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bravo, Julio ; Drapanauskaite, Donata ; Sarunac, Nenad ; Romero, Carlos ; Jesikiewicz, Thomas ; Baltrusaitis, Jonas</creator><creatorcontrib>Bravo, Julio ; Drapanauskaite, Donata ; Sarunac, Nenad ; Romero, Carlos ; Jesikiewicz, Thomas ; Baltrusaitis, Jonas</creatorcontrib><description>The energy optimization modeling work described here was performed to determine efficiency improvements that could be achieved for existing coal-fired power plants to retrofit a partial CO2 capture from the post-combustion flue gas for carbon sequestration through thermal integration. The work presented includes optimization of the mono-ethanol amine (MEA)-based post-combustion CO2 capture to reduce energy requirements that could be achieved at existing power plants by thermal integration of the steam turbine cycle, boiler, CO2 compression train and post-combustion CO2 capture process to offset efficiency and capacity losses that would be incurred by retrofit or implementation of post-combustion CO2 capture. Partial CO2 capture, involving treatment of less than 100% of the flue gas leaving the plant and modular design of the CO2 scrubbing system, was also investigated. Thermal integration of the steam turbine cycle with boiler and CO2 compression train improved cycle and plant performance and offset, in part, the negative effects of post-combustion CO2 capture. The best-analyzed integration options improved gross power output by 5% and net unit efficiency by 1.57%, relative to the conventional MEA process. Operating with 40% CO2 capture increased gross power output by 11.6–14% (depending on the MEA thermal integration option), relative to the conventional MEA integration and 90% CO2 capture. The improvement in net unit performance is larger compared to the improvement in turbine cycle performance because of the CO2 compression work, which is also reduced by partial CO2 capture.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.118940</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon dioxide ; Carbon sequestration ; CO2 capture ; Coal-fired power plants ; Combustion ; Compression ; Efficiency ; Energy requirements ; Ethanol ; Flue gas ; Heat integration ; Integration ; MEA ; Modeling ; Modular design ; Optimization ; Power plants ; Retrofitting ; Steam turbines ; Turbines</subject><ispartof>Fuel (Guildford), 2021-01, Vol.283 (C), p.118940, Article 118940</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-19f5f03c6a2b35b28db9d261294a1b96f0774e356b1a0cd9709e5d499c7f68ec3</citedby><cites>FETCH-LOGICAL-c399t-19f5f03c6a2b35b28db9d261294a1b96f0774e356b1a0cd9709e5d499c7f68ec3</cites><orcidid>0000-0001-5634-955X ; 000000015634955X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236120319360$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775781$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bravo, Julio</creatorcontrib><creatorcontrib>Drapanauskaite, Donata</creatorcontrib><creatorcontrib>Sarunac, Nenad</creatorcontrib><creatorcontrib>Romero, Carlos</creatorcontrib><creatorcontrib>Jesikiewicz, Thomas</creatorcontrib><creatorcontrib>Baltrusaitis, Jonas</creatorcontrib><title>Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration</title><title>Fuel (Guildford)</title><description>The energy optimization modeling work described here was performed to determine efficiency improvements that could be achieved for existing coal-fired power plants to retrofit a partial CO2 capture from the post-combustion flue gas for carbon sequestration through thermal integration. The work presented includes optimization of the mono-ethanol amine (MEA)-based post-combustion CO2 capture to reduce energy requirements that could be achieved at existing power plants by thermal integration of the steam turbine cycle, boiler, CO2 compression train and post-combustion CO2 capture process to offset efficiency and capacity losses that would be incurred by retrofit or implementation of post-combustion CO2 capture. Partial CO2 capture, involving treatment of less than 100% of the flue gas leaving the plant and modular design of the CO2 scrubbing system, was also investigated. Thermal integration of the steam turbine cycle with boiler and CO2 compression train improved cycle and plant performance and offset, in part, the negative effects of post-combustion CO2 capture. The best-analyzed integration options improved gross power output by 5% and net unit efficiency by 1.57%, relative to the conventional MEA process. Operating with 40% CO2 capture increased gross power output by 11.6–14% (depending on the MEA thermal integration option), relative to the conventional MEA integration and 90% CO2 capture. The improvement in net unit performance is larger compared to the improvement in turbine cycle performance because of the CO2 compression work, which is also reduced by partial CO2 capture.</description><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO2 capture</subject><subject>Coal-fired power plants</subject><subject>Combustion</subject><subject>Compression</subject><subject>Efficiency</subject><subject>Energy requirements</subject><subject>Ethanol</subject><subject>Flue gas</subject><subject>Heat integration</subject><subject>Integration</subject><subject>MEA</subject><subject>Modeling</subject><subject>Modular design</subject><subject>Optimization</subject><subject>Power plants</subject><subject>Retrofitting</subject><subject>Steam turbines</subject><subject>Turbines</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXQdcckvaQBNzJ4A2E2ug5pejKTYdp0knRAn97UunYVOHz_yX8-hG4oWVJCq_vd0oywXzLC0oDWoiAnaEFrnmeclvkpWpBEZSyv6Dm6CGFHCOF1WSzQsB6i7ey3itb12BkMPfjNF_ZwGK2HDvoYsHEer9YMDy7ETLuuGcMvrtUQRw948E5DCDhuvRs3W6zao-o1tGkAvlN7bPsIG__7xxU6M2of4PrvvUSfz08fq9fsff3ytnp8z3QuRMyoMKUhua4Ua_KyYXXbiJZVlIlC0UZUhnBeQF5WDVVEt4ITAWVbCKG5qWrQ-SW6nfemzlYGbSPorXZ9DzpKynnJa5qguxlKFxxGCFHu3Oj71EuyohJ1wThjiWIzpb0LwYORg7ed8l-SEjnplzs56ZeTfjnrT6GHOQTpyKMFP3WAyUrSmiq0zv4X_wFmd4-q</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bravo, Julio</creator><creator>Drapanauskaite, Donata</creator><creator>Sarunac, Nenad</creator><creator>Romero, Carlos</creator><creator>Jesikiewicz, Thomas</creator><creator>Baltrusaitis, Jonas</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5634-955X</orcidid><orcidid>https://orcid.org/000000015634955X</orcidid></search><sort><creationdate>20210101</creationdate><title>Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration</title><author>Bravo, Julio ; Drapanauskaite, Donata ; Sarunac, Nenad ; Romero, Carlos ; Jesikiewicz, Thomas ; Baltrusaitis, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-19f5f03c6a2b35b28db9d261294a1b96f0774e356b1a0cd9709e5d499c7f68ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO2 capture</topic><topic>Coal-fired power plants</topic><topic>Combustion</topic><topic>Compression</topic><topic>Efficiency</topic><topic>Energy requirements</topic><topic>Ethanol</topic><topic>Flue gas</topic><topic>Heat integration</topic><topic>Integration</topic><topic>MEA</topic><topic>Modeling</topic><topic>Modular design</topic><topic>Optimization</topic><topic>Power plants</topic><topic>Retrofitting</topic><topic>Steam turbines</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravo, Julio</creatorcontrib><creatorcontrib>Drapanauskaite, Donata</creatorcontrib><creatorcontrib>Sarunac, Nenad</creatorcontrib><creatorcontrib>Romero, Carlos</creatorcontrib><creatorcontrib>Jesikiewicz, Thomas</creatorcontrib><creatorcontrib>Baltrusaitis, Jonas</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravo, Julio</au><au>Drapanauskaite, Donata</au><au>Sarunac, Nenad</au><au>Romero, Carlos</au><au>Jesikiewicz, Thomas</au><au>Baltrusaitis, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>283</volume><issue>C</issue><spage>118940</spage><pages>118940-</pages><artnum>118940</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The energy optimization modeling work described here was performed to determine efficiency improvements that could be achieved for existing coal-fired power plants to retrofit a partial CO2 capture from the post-combustion flue gas for carbon sequestration through thermal integration. The work presented includes optimization of the mono-ethanol amine (MEA)-based post-combustion CO2 capture to reduce energy requirements that could be achieved at existing power plants by thermal integration of the steam turbine cycle, boiler, CO2 compression train and post-combustion CO2 capture process to offset efficiency and capacity losses that would be incurred by retrofit or implementation of post-combustion CO2 capture. Partial CO2 capture, involving treatment of less than 100% of the flue gas leaving the plant and modular design of the CO2 scrubbing system, was also investigated. Thermal integration of the steam turbine cycle with boiler and CO2 compression train improved cycle and plant performance and offset, in part, the negative effects of post-combustion CO2 capture. The best-analyzed integration options improved gross power output by 5% and net unit efficiency by 1.57%, relative to the conventional MEA process. Operating with 40% CO2 capture increased gross power output by 11.6–14% (depending on the MEA thermal integration option), relative to the conventional MEA integration and 90% CO2 capture. The improvement in net unit performance is larger compared to the improvement in turbine cycle performance because of the CO2 compression work, which is also reduced by partial CO2 capture.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.118940</doi><orcidid>https://orcid.org/0000-0001-5634-955X</orcidid><orcidid>https://orcid.org/000000015634955X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-01, Vol.283 (C), p.118940, Article 118940 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_osti_scitechconnect_1775781 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Carbon dioxide Carbon sequestration CO2 capture Coal-fired power plants Combustion Compression Efficiency Energy requirements Ethanol Flue gas Heat integration Integration MEA Modeling Modular design Optimization Power plants Retrofitting Steam turbines Turbines |
title | Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20energy%20requirements%20for%20CO2%20post-combustion%20capture%20process%20through%20advanced%20thermal%20integration&rft.jtitle=Fuel%20(Guildford)&rft.au=Bravo,%20Julio&rft.date=2021-01-01&rft.volume=283&rft.issue=C&rft.spage=118940&rft.pages=118940-&rft.artnum=118940&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.118940&rft_dat=%3Cproquest_osti_%3E2469842722%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469842722&rft_id=info:pmid/&rft_els_id=S0016236120319360&rfr_iscdi=true |