Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors

Water leakage in accidental conditions of high temperature gas-cooled reactors is one of the most critical problems that can compromise the integrity of different nuclear components. In this study, oxidation behaviors of nuclear graphite IG-110 in water ingress accidental conditions were investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-08, Vol.164 (C), p.251-260
Hauptverfasser: Cho, Yi Je, Lu, Kathy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue C
container_start_page 251
container_title Carbon (New York)
container_volume 164
creator Cho, Yi Je
Lu, Kathy
description Water leakage in accidental conditions of high temperature gas-cooled reactors is one of the most critical problems that can compromise the integrity of different nuclear components. In this study, oxidation behaviors of nuclear graphite IG-110 in water ingress accidental conditions were investigated. Mass loss and oxidation rates were evaluated after oxidation tests at temperatures up to 1400 °C in an Ar-20 vol% H2O mixed atmosphere. The activation energy decreased from 318.6 to 148.9 kJ/mol with temperature, indicating two different oxidation regimes. The cross-sections of the oxidized samples were systematically characterized. The corresponding logarithmic porosity profiles showed a temperature dependency. Pore formation moved toward near-surface regions with increasing temperature and preferential binder oxidation, with filler particle degradation. Furthermore, oxidant concentration profiles and oxidation depths were estimated using a theoretical model and compared with the experimental results. This work provides important benchmark data and safety analysis guidance for the accident scenario in high temperature gas-cooled reactors. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.04.004
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320303237</els_id><sourcerecordid>2441888823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-6bcfb400954e33b51e480d9644e6d5aff18b6ffe056e009fbbff58cb22a078ea3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1EJYa2b8DCgnXCdeL8zAYJVbRUqsQGxNK6dq4nHk3tYDsjeIC-Nx6FNd5Ylr5zfO49jL0TUAsQ_cdjbTDq4OsGGqhB1gDyFduJcWirdtyL12wHAGPVN037hr1N6ViechRyx15-YqbIz7iEyMNvN2F2wXNNM55diIkHy_1qToSRHyIus8vEHx8qIYDbIkG-hJTXU3GZOBrjJvKZJ0MeowvceT67w8wzPS8UMa-R-AFTZUI4FUEkNLn8csOuLJ4S3f67r9mP-y_f775WT98eHu8-P1VGwpCrXhurJcC-k9S2uhMkR5j2vZTUTx1aK0bdW0vQ9VQoq7W13Wh00yAMI2F7zd5vviWzU8mUYcxsgvdkshLD0HV7WaAPG7TE8GullNUxrNGXXKqRUozlNG2h5EaZGFKKZNUS3TPGP0qAurSijmprRV1aUSBV2XmRfdpkVMY8O4qXFOQNTS5eQkzB_d_gL5jAmUM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441888823</pqid></control><display><type>article</type><title>Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors</title><source>Elsevier ScienceDirect Journals</source><creator>Cho, Yi Je ; Lu, Kathy</creator><creatorcontrib>Cho, Yi Je ; Lu, Kathy</creatorcontrib><description>Water leakage in accidental conditions of high temperature gas-cooled reactors is one of the most critical problems that can compromise the integrity of different nuclear components. In this study, oxidation behaviors of nuclear graphite IG-110 in water ingress accidental conditions were investigated. Mass loss and oxidation rates were evaluated after oxidation tests at temperatures up to 1400 °C in an Ar-20 vol% H2O mixed atmosphere. The activation energy decreased from 318.6 to 148.9 kJ/mol with temperature, indicating two different oxidation regimes. The cross-sections of the oxidized samples were systematically characterized. The corresponding logarithmic porosity profiles showed a temperature dependency. Pore formation moved toward near-surface regions with increasing temperature and preferential binder oxidation, with filler particle degradation. Furthermore, oxidant concentration profiles and oxidation depths were estimated using a theoretical model and compared with the experimental results. This work provides important benchmark data and safety analysis guidance for the accident scenario in high temperature gas-cooled reactors. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.04.004</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Accidents ; Atmosphere ; Graphite ; High temperature ; High temperature gas cooled reactors ; Nuclear engineering ; Nuclear reactors ; Nuclear safety ; Oxidation ; Oxidation tests ; Oxidizing agents ; Pore formation ; Porosity ; Reactors ; Temperature dependence ; Water vapor</subject><ispartof>Carbon (New York), 2020-08, Vol.164 (C), p.251-260</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 30, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-6bcfb400954e33b51e480d9644e6d5aff18b6ffe056e009fbbff58cb22a078ea3</citedby><cites>FETCH-LOGICAL-c407t-6bcfb400954e33b51e480d9644e6d5aff18b6ffe056e009fbbff58cb22a078ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775594$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Yi Je</creatorcontrib><creatorcontrib>Lu, Kathy</creatorcontrib><title>Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors</title><title>Carbon (New York)</title><description>Water leakage in accidental conditions of high temperature gas-cooled reactors is one of the most critical problems that can compromise the integrity of different nuclear components. In this study, oxidation behaviors of nuclear graphite IG-110 in water ingress accidental conditions were investigated. Mass loss and oxidation rates were evaluated after oxidation tests at temperatures up to 1400 °C in an Ar-20 vol% H2O mixed atmosphere. The activation energy decreased from 318.6 to 148.9 kJ/mol with temperature, indicating two different oxidation regimes. The cross-sections of the oxidized samples were systematically characterized. The corresponding logarithmic porosity profiles showed a temperature dependency. Pore formation moved toward near-surface regions with increasing temperature and preferential binder oxidation, with filler particle degradation. Furthermore, oxidant concentration profiles and oxidation depths were estimated using a theoretical model and compared with the experimental results. This work provides important benchmark data and safety analysis guidance for the accident scenario in high temperature gas-cooled reactors. [Display omitted]</description><subject>Accidents</subject><subject>Atmosphere</subject><subject>Graphite</subject><subject>High temperature</subject><subject>High temperature gas cooled reactors</subject><subject>Nuclear engineering</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Oxidation</subject><subject>Oxidation tests</subject><subject>Oxidizing agents</subject><subject>Pore formation</subject><subject>Porosity</subject><subject>Reactors</subject><subject>Temperature dependence</subject><subject>Water vapor</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS1EJYa2b8DCgnXCdeL8zAYJVbRUqsQGxNK6dq4nHk3tYDsjeIC-Nx6FNd5Ylr5zfO49jL0TUAsQ_cdjbTDq4OsGGqhB1gDyFduJcWirdtyL12wHAGPVN037hr1N6ViechRyx15-YqbIz7iEyMNvN2F2wXNNM55diIkHy_1qToSRHyIus8vEHx8qIYDbIkG-hJTXU3GZOBrjJvKZJ0MeowvceT67w8wzPS8UMa-R-AFTZUI4FUEkNLn8csOuLJ4S3f67r9mP-y_f775WT98eHu8-P1VGwpCrXhurJcC-k9S2uhMkR5j2vZTUTx1aK0bdW0vQ9VQoq7W13Wh00yAMI2F7zd5vviWzU8mUYcxsgvdkshLD0HV7WaAPG7TE8GullNUxrNGXXKqRUozlNG2h5EaZGFKKZNUS3TPGP0qAurSijmprRV1aUSBV2XmRfdpkVMY8O4qXFOQNTS5eQkzB_d_gL5jAmUM</recordid><startdate>20200830</startdate><enddate>20200830</enddate><creator>Cho, Yi Je</creator><creator>Lu, Kathy</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20200830</creationdate><title>Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors</title><author>Cho, Yi Je ; Lu, Kathy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-6bcfb400954e33b51e480d9644e6d5aff18b6ffe056e009fbbff58cb22a078ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidents</topic><topic>Atmosphere</topic><topic>Graphite</topic><topic>High temperature</topic><topic>High temperature gas cooled reactors</topic><topic>Nuclear engineering</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Oxidation</topic><topic>Oxidation tests</topic><topic>Oxidizing agents</topic><topic>Pore formation</topic><topic>Porosity</topic><topic>Reactors</topic><topic>Temperature dependence</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yi Je</creatorcontrib><creatorcontrib>Lu, Kathy</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yi Je</au><au>Lu, Kathy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors</atitle><jtitle>Carbon (New York)</jtitle><date>2020-08-30</date><risdate>2020</risdate><volume>164</volume><issue>C</issue><spage>251</spage><epage>260</epage><pages>251-260</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Water leakage in accidental conditions of high temperature gas-cooled reactors is one of the most critical problems that can compromise the integrity of different nuclear components. In this study, oxidation behaviors of nuclear graphite IG-110 in water ingress accidental conditions were investigated. Mass loss and oxidation rates were evaluated after oxidation tests at temperatures up to 1400 °C in an Ar-20 vol% H2O mixed atmosphere. The activation energy decreased from 318.6 to 148.9 kJ/mol with temperature, indicating two different oxidation regimes. The cross-sections of the oxidized samples were systematically characterized. The corresponding logarithmic porosity profiles showed a temperature dependency. Pore formation moved toward near-surface regions with increasing temperature and preferential binder oxidation, with filler particle degradation. Furthermore, oxidant concentration profiles and oxidation depths were estimated using a theoretical model and compared with the experimental results. This work provides important benchmark data and safety analysis guidance for the accident scenario in high temperature gas-cooled reactors. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.04.004</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-08, Vol.164 (C), p.251-260
issn 0008-6223
1873-3891
language eng
recordid cdi_osti_scitechconnect_1775594
source Elsevier ScienceDirect Journals
subjects Accidents
Atmosphere
Graphite
High temperature
High temperature gas cooled reactors
Nuclear engineering
Nuclear reactors
Nuclear safety
Oxidation
Oxidation tests
Oxidizing agents
Pore formation
Porosity
Reactors
Temperature dependence
Water vapor
title Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20vapor%20oxidation%20behaviors%20of%20nuclear%20graphite%20IG-110%20for%20a%20postulated%20accident%20scenario%20in%20high%20temperature%20gas-cooled%20reactors&rft.jtitle=Carbon%20(New%20York)&rft.au=Cho,%20Yi%20Je&rft.date=2020-08-30&rft.volume=164&rft.issue=C&rft.spage=251&rft.epage=260&rft.pages=251-260&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.04.004&rft_dat=%3Cproquest_osti_%3E2441888823%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441888823&rft_id=info:pmid/&rft_els_id=S0008622320303237&rfr_iscdi=true