Perturbation of the primary acceptor chlorophyll site in the heliobacterial reaction center by coordinating amino acid substitution

All known Type I photochemical reaction center protein complexes contain a form of the pigment chlorophyll a in their primary electron acceptor site (termed ec3). In the reaction center from the primitive heliobacteria (HbRC), all of the pigment cofactors are bacteriochlorophyll g except in the ec3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Bioenergetics 2021-01, Vol.1862 (1), p.148324, Article 148324
Hauptverfasser: Orf, Gregory S., Redding, Kevin E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 148324
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1862
creator Orf, Gregory S.
Redding, Kevin E.
description All known Type I photochemical reaction center protein complexes contain a form of the pigment chlorophyll a in their primary electron acceptor site (termed ec3). In the reaction center from the primitive heliobacteria (HbRC), all of the pigment cofactors are bacteriochlorophyll g except in the ec3 sites, which contain 81-hydroxychlorophyll a. To explore the energetic flexibility of this site, we performed site-directed mutagenesis on two of the amino acids of the PshA core polypeptide responsible for coordinating the 81-hydroxychlorophyll a. These two amino acids are serine-545, which coordinates the central Mg(II) through an intermediary water molecule, and serine-553, which participates in a hydrogen bond with the 131-keto O atom. Mutagenesis of serine-545 to histidine (S545H) changes how the chlorophyll's central Mg(II) is coordinated, with the result of decreasing the chlorophyll's site energy. Mutagenesis of serine-545 to methionine (S545M), which was made to mimic the ec3 site of Photosystem I, abolishes chlorophyll binding and charge separation altogether. Mutagenesis of serine-553 to alanine (S553A) removes the aforementioned hydrogen bond, increasing the site energy of the chlorophyll. In the S545H and S553A mutants, the forward and reverse electron transfer rates from ec3 are both faster. This coincides with a decrease in both the quantum yield of initial charge separation and the overall photochemical quantum yield. Taken together, these data indicate that wild-type HbRC is optimized for overall photochemical efficiency, rather than just for maximizing the forward electron transfer rate. The necessity for a chlorophyll a derivative at the ec3 site is also discussed. [Display omitted] •Site-directed mutagenesis of the heliobacterial reaction center has been achieved.•Two residues near the 81-hydroxychlorophyll a cofactor were targeted.•S545 → H and S553 → A mutations alter the observed electron transfer rates.•S545 → H and S553 → A mutations decrease the efficiency of primary charge separation.•Proteins with the S545 → M mutation lack native function and only partially assemble.
doi_str_mv 10.1016/j.bbabio.2020.148324
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272820301742</els_id><sourcerecordid>S0005272820301742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-cce1e54bb14cc0375529f72c79d9f0c6f37474c3b02dca4fe930b99c941e122e3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVoaLZJv0Epondv9c_r1aUQQpIWAu2hOQtpPK61eKVF0gb2nC9eOU567Eli-L33Zh4hnzhbc8Y3X3dr56zzcS2YqCO1lUKdkRXfdroRm5a9IyvGWNuITmwvyIecd6zKlJDvyYWUTGqp9Io8_8JUjsnZ4mOgcaBlRHpIfm_TiVoAPJSYKIxTTPEwnqaJZl-Q-vACjjj56CwUTN5ONGH9zj6AoY6oO1GIMfU-VPvwh9q9D7G6-p7mo8vFl-OMX5HzwU4ZP76-l-Tx7vb3zffm4ef9j5vrhwaUbEtTl-HYKue4AmCya1uhh05Ap3s9MNgMslOdAumY6MGqAbVkTmvQiiMXAuUl-bL4xhptMtRDYIQYAkIxvKuGW14htUCQYs4JB_PahuHMzMWbnVmKN3PxZim-yj4vssPR7bH_J3prugLfFgDrhU8e07wABsDepzm_j_7_CX8Bn1CZGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Perturbation of the primary acceptor chlorophyll site in the heliobacterial reaction center by coordinating amino acid substitution</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Orf, Gregory S. ; Redding, Kevin E.</creator><creatorcontrib>Orf, Gregory S. ; Redding, Kevin E.</creatorcontrib><description>All known Type I photochemical reaction center protein complexes contain a form of the pigment chlorophyll a in their primary electron acceptor site (termed ec3). In the reaction center from the primitive heliobacteria (HbRC), all of the pigment cofactors are bacteriochlorophyll g except in the ec3 sites, which contain 81-hydroxychlorophyll a. To explore the energetic flexibility of this site, we performed site-directed mutagenesis on two of the amino acids of the PshA core polypeptide responsible for coordinating the 81-hydroxychlorophyll a. These two amino acids are serine-545, which coordinates the central Mg(II) through an intermediary water molecule, and serine-553, which participates in a hydrogen bond with the 131-keto O atom. Mutagenesis of serine-545 to histidine (S545H) changes how the chlorophyll's central Mg(II) is coordinated, with the result of decreasing the chlorophyll's site energy. Mutagenesis of serine-545 to methionine (S545M), which was made to mimic the ec3 site of Photosystem I, abolishes chlorophyll binding and charge separation altogether. Mutagenesis of serine-553 to alanine (S553A) removes the aforementioned hydrogen bond, increasing the site energy of the chlorophyll. In the S545H and S553A mutants, the forward and reverse electron transfer rates from ec3 are both faster. This coincides with a decrease in both the quantum yield of initial charge separation and the overall photochemical quantum yield. Taken together, these data indicate that wild-type HbRC is optimized for overall photochemical efficiency, rather than just for maximizing the forward electron transfer rate. The necessity for a chlorophyll a derivative at the ec3 site is also discussed. [Display omitted] •Site-directed mutagenesis of the heliobacterial reaction center has been achieved.•Two residues near the 81-hydroxychlorophyll a cofactor were targeted.•S545 → H and S553 → A mutations alter the observed electron transfer rates.•S545 → H and S553 → A mutations decrease the efficiency of primary charge separation.•Proteins with the S545 → M mutation lack native function and only partially assemble.</description><identifier>ISSN: 0005-2728</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2020.148324</identifier><identifier>PMID: 33039349</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amino Acid Substitution ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Charge separation ; Chlorophyll ; Chlorophyll - chemistry ; Chlorophyll - genetics ; Chlorophyll - metabolism ; Clostridiales - chemistry ; Clostridiales - genetics ; Clostridiales - metabolism ; Heliobacteria ; Mutagenesis ; Mutation, Missense ; Photosystem I Protein Complex - chemistry ; Photosystem I Protein Complex - genetics ; Photosystem I Protein Complex - metabolism ; Reaction center ; Transient absorption</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2021-01, Vol.1862 (1), p.148324, Article 148324</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-cce1e54bb14cc0375529f72c79d9f0c6f37474c3b02dca4fe930b99c941e122e3</citedby><cites>FETCH-LOGICAL-c435t-cce1e54bb14cc0375529f72c79d9f0c6f37474c3b02dca4fe930b99c941e122e3</cites><orcidid>0000-0003-2819-4022 ; 0000-0002-4853-8518 ; 0000000328194022 ; 0000000248538518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005272820301742$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33039349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1775581$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Orf, Gregory S.</creatorcontrib><creatorcontrib>Redding, Kevin E.</creatorcontrib><title>Perturbation of the primary acceptor chlorophyll site in the heliobacterial reaction center by coordinating amino acid substitution</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>All known Type I photochemical reaction center protein complexes contain a form of the pigment chlorophyll a in their primary electron acceptor site (termed ec3). In the reaction center from the primitive heliobacteria (HbRC), all of the pigment cofactors are bacteriochlorophyll g except in the ec3 sites, which contain 81-hydroxychlorophyll a. To explore the energetic flexibility of this site, we performed site-directed mutagenesis on two of the amino acids of the PshA core polypeptide responsible for coordinating the 81-hydroxychlorophyll a. These two amino acids are serine-545, which coordinates the central Mg(II) through an intermediary water molecule, and serine-553, which participates in a hydrogen bond with the 131-keto O atom. Mutagenesis of serine-545 to histidine (S545H) changes how the chlorophyll's central Mg(II) is coordinated, with the result of decreasing the chlorophyll's site energy. Mutagenesis of serine-545 to methionine (S545M), which was made to mimic the ec3 site of Photosystem I, abolishes chlorophyll binding and charge separation altogether. Mutagenesis of serine-553 to alanine (S553A) removes the aforementioned hydrogen bond, increasing the site energy of the chlorophyll. In the S545H and S553A mutants, the forward and reverse electron transfer rates from ec3 are both faster. This coincides with a decrease in both the quantum yield of initial charge separation and the overall photochemical quantum yield. Taken together, these data indicate that wild-type HbRC is optimized for overall photochemical efficiency, rather than just for maximizing the forward electron transfer rate. The necessity for a chlorophyll a derivative at the ec3 site is also discussed. [Display omitted] •Site-directed mutagenesis of the heliobacterial reaction center has been achieved.•Two residues near the 81-hydroxychlorophyll a cofactor were targeted.•S545 → H and S553 → A mutations alter the observed electron transfer rates.•S545 → H and S553 → A mutations decrease the efficiency of primary charge separation.•Proteins with the S545 → M mutation lack native function and only partially assemble.</description><subject>Amino Acid Substitution</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Charge separation</subject><subject>Chlorophyll</subject><subject>Chlorophyll - chemistry</subject><subject>Chlorophyll - genetics</subject><subject>Chlorophyll - metabolism</subject><subject>Clostridiales - chemistry</subject><subject>Clostridiales - genetics</subject><subject>Clostridiales - metabolism</subject><subject>Heliobacteria</subject><subject>Mutagenesis</subject><subject>Mutation, Missense</subject><subject>Photosystem I Protein Complex - chemistry</subject><subject>Photosystem I Protein Complex - genetics</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Reaction center</subject><subject>Transient absorption</subject><issn>0005-2728</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9r3DAQxUVoaLZJv0Epondv9c_r1aUQQpIWAu2hOQtpPK61eKVF0gb2nC9eOU567Eli-L33Zh4hnzhbc8Y3X3dr56zzcS2YqCO1lUKdkRXfdroRm5a9IyvGWNuITmwvyIecd6zKlJDvyYWUTGqp9Io8_8JUjsnZ4mOgcaBlRHpIfm_TiVoAPJSYKIxTTPEwnqaJZl-Q-vACjjj56CwUTN5ONGH9zj6AoY6oO1GIMfU-VPvwh9q9D7G6-p7mo8vFl-OMX5HzwU4ZP76-l-Tx7vb3zffm4ef9j5vrhwaUbEtTl-HYKue4AmCya1uhh05Ap3s9MNgMslOdAumY6MGqAbVkTmvQiiMXAuUl-bL4xhptMtRDYIQYAkIxvKuGW14htUCQYs4JB_PahuHMzMWbnVmKN3PxZim-yj4vssPR7bH_J3prugLfFgDrhU8e07wABsDepzm_j_7_CX8Bn1CZGg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Orf, Gregory S.</creator><creator>Redding, Kevin E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2819-4022</orcidid><orcidid>https://orcid.org/0000-0002-4853-8518</orcidid><orcidid>https://orcid.org/0000000328194022</orcidid><orcidid>https://orcid.org/0000000248538518</orcidid></search><sort><creationdate>20210101</creationdate><title>Perturbation of the primary acceptor chlorophyll site in the heliobacterial reaction center by coordinating amino acid substitution</title><author>Orf, Gregory S. ; Redding, Kevin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-cce1e54bb14cc0375529f72c79d9f0c6f37474c3b02dca4fe930b99c941e122e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Substitution</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Charge separation</topic><topic>Chlorophyll</topic><topic>Chlorophyll - chemistry</topic><topic>Chlorophyll - genetics</topic><topic>Chlorophyll - metabolism</topic><topic>Clostridiales - chemistry</topic><topic>Clostridiales - genetics</topic><topic>Clostridiales - metabolism</topic><topic>Heliobacteria</topic><topic>Mutagenesis</topic><topic>Mutation, Missense</topic><topic>Photosystem I Protein Complex - chemistry</topic><topic>Photosystem I Protein Complex - genetics</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Reaction center</topic><topic>Transient absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orf, Gregory S.</creatorcontrib><creatorcontrib>Redding, Kevin E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orf, Gregory S.</au><au>Redding, Kevin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation of the primary acceptor chlorophyll site in the heliobacterial reaction center by coordinating amino acid substitution</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1862</volume><issue>1</issue><spage>148324</spage><pages>148324-</pages><artnum>148324</artnum><issn>0005-2728</issn><eissn>1879-2650</eissn><abstract>All known Type I photochemical reaction center protein complexes contain a form of the pigment chlorophyll a in their primary electron acceptor site (termed ec3). In the reaction center from the primitive heliobacteria (HbRC), all of the pigment cofactors are bacteriochlorophyll g except in the ec3 sites, which contain 81-hydroxychlorophyll a. To explore the energetic flexibility of this site, we performed site-directed mutagenesis on two of the amino acids of the PshA core polypeptide responsible for coordinating the 81-hydroxychlorophyll a. These two amino acids are serine-545, which coordinates the central Mg(II) through an intermediary water molecule, and serine-553, which participates in a hydrogen bond with the 131-keto O atom. Mutagenesis of serine-545 to histidine (S545H) changes how the chlorophyll's central Mg(II) is coordinated, with the result of decreasing the chlorophyll's site energy. Mutagenesis of serine-545 to methionine (S545M), which was made to mimic the ec3 site of Photosystem I, abolishes chlorophyll binding and charge separation altogether. Mutagenesis of serine-553 to alanine (S553A) removes the aforementioned hydrogen bond, increasing the site energy of the chlorophyll. In the S545H and S553A mutants, the forward and reverse electron transfer rates from ec3 are both faster. This coincides with a decrease in both the quantum yield of initial charge separation and the overall photochemical quantum yield. Taken together, these data indicate that wild-type HbRC is optimized for overall photochemical efficiency, rather than just for maximizing the forward electron transfer rate. The necessity for a chlorophyll a derivative at the ec3 site is also discussed. [Display omitted] •Site-directed mutagenesis of the heliobacterial reaction center has been achieved.•Two residues near the 81-hydroxychlorophyll a cofactor were targeted.•S545 → H and S553 → A mutations alter the observed electron transfer rates.•S545 → H and S553 → A mutations decrease the efficiency of primary charge separation.•Proteins with the S545 → M mutation lack native function and only partially assemble.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33039349</pmid><doi>10.1016/j.bbabio.2020.148324</doi><orcidid>https://orcid.org/0000-0003-2819-4022</orcidid><orcidid>https://orcid.org/0000-0002-4853-8518</orcidid><orcidid>https://orcid.org/0000000328194022</orcidid><orcidid>https://orcid.org/0000000248538518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2021-01, Vol.1862 (1), p.148324, Article 148324
issn 0005-2728
1879-2650
language eng
recordid cdi_osti_scitechconnect_1775581
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Amino Acid Substitution
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites
Charge separation
Chlorophyll
Chlorophyll - chemistry
Chlorophyll - genetics
Chlorophyll - metabolism
Clostridiales - chemistry
Clostridiales - genetics
Clostridiales - metabolism
Heliobacteria
Mutagenesis
Mutation, Missense
Photosystem I Protein Complex - chemistry
Photosystem I Protein Complex - genetics
Photosystem I Protein Complex - metabolism
Reaction center
Transient absorption
title Perturbation of the primary acceptor chlorophyll site in the heliobacterial reaction center by coordinating amino acid substitution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20of%20the%20primary%20acceptor%20chlorophyll%20site%20in%20the%20heliobacterial%20reaction%20center%20by%20coordinating%20amino%20acid%20substitution&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Orf,%20Gregory%20S.&rft.date=2021-01-01&rft.volume=1862&rft.issue=1&rft.spage=148324&rft.pages=148324-&rft.artnum=148324&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2020.148324&rft_dat=%3Celsevier_osti_%3ES0005272820301742%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33039349&rft_els_id=S0005272820301742&rfr_iscdi=true