Intrafibrillar Mineralized Collagen–Hydroxyapatite-Based Scaffolds for Bone Regeneration

As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-04, Vol.12 (16), p.18235-18249
Hauptverfasser: Yu, Le, Rowe, David W, Perera, Inosh P, Zhang, Jiyao, Suib, Steven L, Xin, Xiaonan, Wei, Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18249
container_issue 16
container_start_page 18235
container_title ACS applied materials & interfaces
container_volume 12
creator Yu, Le
Rowe, David W
Perera, Inosh P
Zhang, Jiyao
Suib, Steven L
Xin, Xiaonan
Wei, Mei
description As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col–HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col–HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.
doi_str_mv 10.1021/acsami.0c00275
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384199436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a463t-d9f174a19967e1606a94853972d4867b716d65f9579dd4dc98898cfb65cc81c03</originalsourceid><addsrcrecordid>eNp1kMtKJDEUhoMo3satSylcyUC1SSrXpTaOCorgzGxmE9K5zESqkzapBtuV7-AbzpMYqdadqxxyvvNzzgfAIYITBDE61aboeZhAAyHmdAPsIklIKzDFm581ITtgr5QHCFmHId0GOx3GCDNEd8Gf6zhk7cMsh77XubkN0WXdh2dnm2mqX39d_P_yerWyOT2t9EIPYXDtuS61_9No71NvS-NTbs5TdM29q3wNGEKK38CW131xB-t3H_z-cfFretXe3F1eT89uWk1YN7RWesSJRlIy7hCDTEsiaCc5tkQwPuOIWUa9pFxaS6yRQkhh_IxRYwQysNsHx2NuKkNQxdQFzT-TYnRmUIhzSjtRoZMRWuT0uHRlUPNQjKsHRpeWReFOkLoC6VhFJyNqciolO68WOcx1XikE1bt0NUpXa-l14GidvZzNnf3EPyxX4PsI1EH1kJY5Vh9fpb0BbTaMyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384199436</pqid></control><display><type>article</type><title>Intrafibrillar Mineralized Collagen–Hydroxyapatite-Based Scaffolds for Bone Regeneration</title><source>ACS Publications</source><source>MEDLINE</source><creator>Yu, Le ; Rowe, David W ; Perera, Inosh P ; Zhang, Jiyao ; Suib, Steven L ; Xin, Xiaonan ; Wei, Mei</creator><creatorcontrib>Yu, Le ; Rowe, David W ; Perera, Inosh P ; Zhang, Jiyao ; Suib, Steven L ; Xin, Xiaonan ; Wei, Mei ; Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><description>As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col–HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col–HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c00275</identifier><identifier>PMID: 32212615</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>3T3 Cells ; anatomy ; Animals ; biopolymers ; bone regeneration ; Bone Regeneration - drug effects ; Cell Differentiation - drug effects ; Cells, Cultured ; Collagen - chemistry ; Collagen - pharmacology ; Durapatite - chemistry ; Durapatite - pharmacology ; fluorescence ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; intrafibrillar ; iron ; lamellar ; manganese ; Mesenchymal Stem Cells - drug effects ; Mice ; scaffolds ; Skull - drug effects ; Skull - pathology ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; transition metals</subject><ispartof>ACS applied materials &amp; interfaces, 2020-04, Vol.12 (16), p.18235-18249</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a463t-d9f174a19967e1606a94853972d4867b716d65f9579dd4dc98898cfb65cc81c03</citedby><cites>FETCH-LOGICAL-a463t-d9f174a19967e1606a94853972d4867b716d65f9579dd4dc98898cfb65cc81c03</cites><orcidid>0000-0002-9545-7091 ; 0000-0003-3073-311X ; 0000000295457091 ; 000000033073311X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c00275$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c00275$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32212615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1775538$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Le</creatorcontrib><creatorcontrib>Rowe, David W</creatorcontrib><creatorcontrib>Perera, Inosh P</creatorcontrib><creatorcontrib>Zhang, Jiyao</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Xin, Xiaonan</creatorcontrib><creatorcontrib>Wei, Mei</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><title>Intrafibrillar Mineralized Collagen–Hydroxyapatite-Based Scaffolds for Bone Regeneration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col–HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col–HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.</description><subject>3T3 Cells</subject><subject>anatomy</subject><subject>Animals</subject><subject>biopolymers</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Collagen - chemistry</subject><subject>Collagen - pharmacology</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>fluorescence</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>intrafibrillar</subject><subject>iron</subject><subject>lamellar</subject><subject>manganese</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mice</subject><subject>scaffolds</subject><subject>Skull - drug effects</subject><subject>Skull - pathology</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>transition metals</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKJDEUhoMo3satSylcyUC1SSrXpTaOCorgzGxmE9K5zESqkzapBtuV7-AbzpMYqdadqxxyvvNzzgfAIYITBDE61aboeZhAAyHmdAPsIklIKzDFm581ITtgr5QHCFmHId0GOx3GCDNEd8Gf6zhk7cMsh77XubkN0WXdh2dnm2mqX39d_P_yerWyOT2t9EIPYXDtuS61_9No71NvS-NTbs5TdM29q3wNGEKK38CW131xB-t3H_z-cfFretXe3F1eT89uWk1YN7RWesSJRlIy7hCDTEsiaCc5tkQwPuOIWUa9pFxaS6yRQkhh_IxRYwQysNsHx2NuKkNQxdQFzT-TYnRmUIhzSjtRoZMRWuT0uHRlUPNQjKsHRpeWReFOkLoC6VhFJyNqciolO68WOcx1XikE1bt0NUpXa-l14GidvZzNnf3EPyxX4PsI1EH1kJY5Vh9fpb0BbTaMyw</recordid><startdate>20200422</startdate><enddate>20200422</enddate><creator>Yu, Le</creator><creator>Rowe, David W</creator><creator>Perera, Inosh P</creator><creator>Zhang, Jiyao</creator><creator>Suib, Steven L</creator><creator>Xin, Xiaonan</creator><creator>Wei, Mei</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9545-7091</orcidid><orcidid>https://orcid.org/0000-0003-3073-311X</orcidid><orcidid>https://orcid.org/0000000295457091</orcidid><orcidid>https://orcid.org/000000033073311X</orcidid></search><sort><creationdate>20200422</creationdate><title>Intrafibrillar Mineralized Collagen–Hydroxyapatite-Based Scaffolds for Bone Regeneration</title><author>Yu, Le ; Rowe, David W ; Perera, Inosh P ; Zhang, Jiyao ; Suib, Steven L ; Xin, Xiaonan ; Wei, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a463t-d9f174a19967e1606a94853972d4867b716d65f9579dd4dc98898cfb65cc81c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3T3 Cells</topic><topic>anatomy</topic><topic>Animals</topic><topic>biopolymers</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Collagen - chemistry</topic><topic>Collagen - pharmacology</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>fluorescence</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>intrafibrillar</topic><topic>iron</topic><topic>lamellar</topic><topic>manganese</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mice</topic><topic>scaffolds</topic><topic>Skull - drug effects</topic><topic>Skull - pathology</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Le</creatorcontrib><creatorcontrib>Rowe, David W</creatorcontrib><creatorcontrib>Perera, Inosh P</creatorcontrib><creatorcontrib>Zhang, Jiyao</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Xin, Xiaonan</creatorcontrib><creatorcontrib>Wei, Mei</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Le</au><au>Rowe, David W</au><au>Perera, Inosh P</au><au>Zhang, Jiyao</au><au>Suib, Steven L</au><au>Xin, Xiaonan</au><au>Wei, Mei</au><aucorp>Univ. of Connecticut, Storrs, CT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrafibrillar Mineralized Collagen–Hydroxyapatite-Based Scaffolds for Bone Regeneration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-04-22</date><risdate>2020</risdate><volume>12</volume><issue>16</issue><spage>18235</spage><epage>18249</epage><pages>18235-18249</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col–HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col–HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32212615</pmid><doi>10.1021/acsami.0c00275</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9545-7091</orcidid><orcidid>https://orcid.org/0000-0003-3073-311X</orcidid><orcidid>https://orcid.org/0000000295457091</orcidid><orcidid>https://orcid.org/000000033073311X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-04, Vol.12 (16), p.18235-18249
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1775538
source ACS Publications; MEDLINE
subjects 3T3 Cells
anatomy
Animals
biopolymers
bone regeneration
Bone Regeneration - drug effects
Cell Differentiation - drug effects
Cells, Cultured
Collagen - chemistry
Collagen - pharmacology
Durapatite - chemistry
Durapatite - pharmacology
fluorescence
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
intrafibrillar
iron
lamellar
manganese
Mesenchymal Stem Cells - drug effects
Mice
scaffolds
Skull - drug effects
Skull - pathology
Tissue Engineering - methods
Tissue Scaffolds - chemistry
transition metals
title Intrafibrillar Mineralized Collagen–Hydroxyapatite-Based Scaffolds for Bone Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrafibrillar%20Mineralized%20Collagen%E2%80%93Hydroxyapatite-Based%20Scaffolds%20for%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yu,%20Le&rft.aucorp=Univ.%20of%20Connecticut,%20Storrs,%20CT%20(United%20States)&rft.date=2020-04-22&rft.volume=12&rft.issue=16&rft.spage=18235&rft.epage=18249&rft.pages=18235-18249&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c00275&rft_dat=%3Cproquest_osti_%3E2384199436%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384199436&rft_id=info:pmid/32212615&rfr_iscdi=true