Benchmarking boron carbide equation of state using computation and experiment
Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2020-11, Vol.102 (5-1), p.053203-053203, Article 053203 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 053203 |
---|---|
container_issue | 5-1 |
container_start_page | 053203 |
container_title | Physical review. E |
container_volume | 102 |
creator | Zhang, Shuai Marshall, Michelle C Yang, Lin H Sterne, Philip A Militzer, Burkhard Däne, Markus Gaffney, James A Shamp, Andrew Ogitsu, Tadashi Caspersen, Kyle Lazicki, Amy E Erskine, David London, Richard A Celliers, Peter M Nilsen, Joseph Whitley, Heather D |
description | Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B_{4}C over a broad range of temperatures (∼6×10^{3}-5×10^{8} K) and densities (0.025-50 g/cm^{3}). We assess that the largest discrepancies between theoretical predictions are ≲5% near the compression maximum at 1-2×10^{6} K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are ∼18% and occur at temperatures between 6×10^{3}-2×10^{5} K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. To account for potential differences in the ion thermal term, we have developed three new equation-of-state models that are consistent with theoretical calculations and experiment. We apply these new models to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies. |
doi_str_mv | 10.1103/PhysRevE.102.053203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470898330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-b02adb16cffe487f40547a379b2ef10198c1a82ff198debcb06f0ebd402fee253</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobsz9AkGKV95sniRt013qmB8wUUSvQ5KeuOradE0q7t_b0W1XOXnznHPIQ8glhSmlwG_fVlv_jr-LKQU2hYQz4CdkyGIBE-iup8c6TgZk7P03ANAUZoKyczLgnDMBKR2Sl3uszKpUzU9RfUXaNa6KjGp0kWOEm1aFogucjXxQAaPW7yjjyroN_ZOq8gj_amyKEqtwQc6sWnsc788R-XxYfMyfJsvXx-f53XJieMbCRANTuaapsRbjTNgYklgoLmaaoaVAZ5mhKmPWdlWO2mhILaDOY2AWkSV8RK77uc6HQnpTBDQr46oKTZBUiAS46KCbHqobt2nRB1kW3uB6rSp0rZc7Qdks4xw6lPeoaZz3DVpZdx9SzVZSkDvf8uC7C5jsfXddV_sFrS4xP_Yc7PJ_gb19vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470898330</pqid></control><display><type>article</type><title>Benchmarking boron carbide equation of state using computation and experiment</title><source>American Physical Society Journals</source><creator>Zhang, Shuai ; Marshall, Michelle C ; Yang, Lin H ; Sterne, Philip A ; Militzer, Burkhard ; Däne, Markus ; Gaffney, James A ; Shamp, Andrew ; Ogitsu, Tadashi ; Caspersen, Kyle ; Lazicki, Amy E ; Erskine, David ; London, Richard A ; Celliers, Peter M ; Nilsen, Joseph ; Whitley, Heather D</creator><creatorcontrib>Zhang, Shuai ; Marshall, Michelle C ; Yang, Lin H ; Sterne, Philip A ; Militzer, Burkhard ; Däne, Markus ; Gaffney, James A ; Shamp, Andrew ; Ogitsu, Tadashi ; Caspersen, Kyle ; Lazicki, Amy E ; Erskine, David ; London, Richard A ; Celliers, Peter M ; Nilsen, Joseph ; Whitley, Heather D ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B_{4}C over a broad range of temperatures (∼6×10^{3}-5×10^{8} K) and densities (0.025-50 g/cm^{3}). We assess that the largest discrepancies between theoretical predictions are ≲5% near the compression maximum at 1-2×10^{6} K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are ∼18% and occur at temperatures between 6×10^{3}-2×10^{5} K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. To account for potential differences in the ion thermal term, we have developed three new equation-of-state models that are consistent with theoretical calculations and experiment. We apply these new models to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.102.053203</identifier><identifier>PMID: 33327061</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; density functional calculations ; equations of state ; high-energy-density plasmas ; hot dense plasma ; path-integral Monte Carlo ; plasma ionization ; shock waves ; warm-dense matter</subject><ispartof>Physical review. E, 2020-11, Vol.102 (5-1), p.053203-053203, Article 053203</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-b02adb16cffe487f40547a379b2ef10198c1a82ff198debcb06f0ebd402fee253</citedby><cites>FETCH-LOGICAL-c382t-b02adb16cffe487f40547a379b2ef10198c1a82ff198debcb06f0ebd402fee253</cites><orcidid>0000-0001-9503-4964 ; 0000-0001-9301-8469 ; 0000-0001-8797-3005 ; 0000-0002-7094-458X ; 0000000187973005 ; 0000000195034964 ; 0000000193018469 ; 000000027094458X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33327061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1775037$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Marshall, Michelle C</creatorcontrib><creatorcontrib>Yang, Lin H</creatorcontrib><creatorcontrib>Sterne, Philip A</creatorcontrib><creatorcontrib>Militzer, Burkhard</creatorcontrib><creatorcontrib>Däne, Markus</creatorcontrib><creatorcontrib>Gaffney, James A</creatorcontrib><creatorcontrib>Shamp, Andrew</creatorcontrib><creatorcontrib>Ogitsu, Tadashi</creatorcontrib><creatorcontrib>Caspersen, Kyle</creatorcontrib><creatorcontrib>Lazicki, Amy E</creatorcontrib><creatorcontrib>Erskine, David</creatorcontrib><creatorcontrib>London, Richard A</creatorcontrib><creatorcontrib>Celliers, Peter M</creatorcontrib><creatorcontrib>Nilsen, Joseph</creatorcontrib><creatorcontrib>Whitley, Heather D</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Benchmarking boron carbide equation of state using computation and experiment</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B_{4}C over a broad range of temperatures (∼6×10^{3}-5×10^{8} K) and densities (0.025-50 g/cm^{3}). We assess that the largest discrepancies between theoretical predictions are ≲5% near the compression maximum at 1-2×10^{6} K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are ∼18% and occur at temperatures between 6×10^{3}-2×10^{5} K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. To account for potential differences in the ion thermal term, we have developed three new equation-of-state models that are consistent with theoretical calculations and experiment. We apply these new models to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>density functional calculations</subject><subject>equations of state</subject><subject>high-energy-density plasmas</subject><subject>hot dense plasma</subject><subject>path-integral Monte Carlo</subject><subject>plasma ionization</subject><subject>shock waves</subject><subject>warm-dense matter</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobsz9AkGKV95sniRt013qmB8wUUSvQ5KeuOradE0q7t_b0W1XOXnznHPIQ8glhSmlwG_fVlv_jr-LKQU2hYQz4CdkyGIBE-iup8c6TgZk7P03ANAUZoKyczLgnDMBKR2Sl3uszKpUzU9RfUXaNa6KjGp0kWOEm1aFogucjXxQAaPW7yjjyroN_ZOq8gj_amyKEqtwQc6sWnsc788R-XxYfMyfJsvXx-f53XJieMbCRANTuaapsRbjTNgYklgoLmaaoaVAZ5mhKmPWdlWO2mhILaDOY2AWkSV8RK77uc6HQnpTBDQr46oKTZBUiAS46KCbHqobt2nRB1kW3uB6rSp0rZc7Qdks4xw6lPeoaZz3DVpZdx9SzVZSkDvf8uC7C5jsfXddV_sFrS4xP_Yc7PJ_gb19vg</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Zhang, Shuai</creator><creator>Marshall, Michelle C</creator><creator>Yang, Lin H</creator><creator>Sterne, Philip A</creator><creator>Militzer, Burkhard</creator><creator>Däne, Markus</creator><creator>Gaffney, James A</creator><creator>Shamp, Andrew</creator><creator>Ogitsu, Tadashi</creator><creator>Caspersen, Kyle</creator><creator>Lazicki, Amy E</creator><creator>Erskine, David</creator><creator>London, Richard A</creator><creator>Celliers, Peter M</creator><creator>Nilsen, Joseph</creator><creator>Whitley, Heather D</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9503-4964</orcidid><orcidid>https://orcid.org/0000-0001-9301-8469</orcidid><orcidid>https://orcid.org/0000-0001-8797-3005</orcidid><orcidid>https://orcid.org/0000-0002-7094-458X</orcidid><orcidid>https://orcid.org/0000000187973005</orcidid><orcidid>https://orcid.org/0000000195034964</orcidid><orcidid>https://orcid.org/0000000193018469</orcidid><orcidid>https://orcid.org/000000027094458X</orcidid></search><sort><creationdate>20201103</creationdate><title>Benchmarking boron carbide equation of state using computation and experiment</title><author>Zhang, Shuai ; Marshall, Michelle C ; Yang, Lin H ; Sterne, Philip A ; Militzer, Burkhard ; Däne, Markus ; Gaffney, James A ; Shamp, Andrew ; Ogitsu, Tadashi ; Caspersen, Kyle ; Lazicki, Amy E ; Erskine, David ; London, Richard A ; Celliers, Peter M ; Nilsen, Joseph ; Whitley, Heather D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-b02adb16cffe487f40547a379b2ef10198c1a82ff198debcb06f0ebd402fee253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>density functional calculations</topic><topic>equations of state</topic><topic>high-energy-density plasmas</topic><topic>hot dense plasma</topic><topic>path-integral Monte Carlo</topic><topic>plasma ionization</topic><topic>shock waves</topic><topic>warm-dense matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Marshall, Michelle C</creatorcontrib><creatorcontrib>Yang, Lin H</creatorcontrib><creatorcontrib>Sterne, Philip A</creatorcontrib><creatorcontrib>Militzer, Burkhard</creatorcontrib><creatorcontrib>Däne, Markus</creatorcontrib><creatorcontrib>Gaffney, James A</creatorcontrib><creatorcontrib>Shamp, Andrew</creatorcontrib><creatorcontrib>Ogitsu, Tadashi</creatorcontrib><creatorcontrib>Caspersen, Kyle</creatorcontrib><creatorcontrib>Lazicki, Amy E</creatorcontrib><creatorcontrib>Erskine, David</creatorcontrib><creatorcontrib>London, Richard A</creatorcontrib><creatorcontrib>Celliers, Peter M</creatorcontrib><creatorcontrib>Nilsen, Joseph</creatorcontrib><creatorcontrib>Whitley, Heather D</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuai</au><au>Marshall, Michelle C</au><au>Yang, Lin H</au><au>Sterne, Philip A</au><au>Militzer, Burkhard</au><au>Däne, Markus</au><au>Gaffney, James A</au><au>Shamp, Andrew</au><au>Ogitsu, Tadashi</au><au>Caspersen, Kyle</au><au>Lazicki, Amy E</au><au>Erskine, David</au><au>London, Richard A</au><au>Celliers, Peter M</au><au>Nilsen, Joseph</au><au>Whitley, Heather D</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking boron carbide equation of state using computation and experiment</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>102</volume><issue>5-1</issue><spage>053203</spage><epage>053203</epage><pages>053203-053203</pages><artnum>053203</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B_{4}C over a broad range of temperatures (∼6×10^{3}-5×10^{8} K) and densities (0.025-50 g/cm^{3}). We assess that the largest discrepancies between theoretical predictions are ≲5% near the compression maximum at 1-2×10^{6} K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are ∼18% and occur at temperatures between 6×10^{3}-2×10^{5} K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. To account for potential differences in the ion thermal term, we have developed three new equation-of-state models that are consistent with theoretical calculations and experiment. We apply these new models to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>33327061</pmid><doi>10.1103/PhysRevE.102.053203</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9503-4964</orcidid><orcidid>https://orcid.org/0000-0001-9301-8469</orcidid><orcidid>https://orcid.org/0000-0001-8797-3005</orcidid><orcidid>https://orcid.org/0000-0002-7094-458X</orcidid><orcidid>https://orcid.org/0000000187973005</orcidid><orcidid>https://orcid.org/0000000195034964</orcidid><orcidid>https://orcid.org/0000000193018469</orcidid><orcidid>https://orcid.org/000000027094458X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2020-11, Vol.102 (5-1), p.053203-053203, Article 053203 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_osti_scitechconnect_1775037 |
source | American Physical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY density functional calculations equations of state high-energy-density plasmas hot dense plasma path-integral Monte Carlo plasma ionization shock waves warm-dense matter |
title | Benchmarking boron carbide equation of state using computation and experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20boron%20carbide%20equation%20of%20state%20using%20computation%20and%20experiment&rft.jtitle=Physical%20review.%20E&rft.au=Zhang,%20Shuai&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-11-03&rft.volume=102&rft.issue=5-1&rft.spage=053203&rft.epage=053203&rft.pages=053203-053203&rft.artnum=053203&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.102.053203&rft_dat=%3Cproquest_osti_%3E2470898330%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470898330&rft_id=info:pmid/33327061&rfr_iscdi=true |